Sferik Koordinatalar




Sferik koordinatalar sistemasi  — uch oʻlchamli koordinatalar sistemasi boʻlib, fazodagi nuqtaning vaziyati uchta kattalik bilan (



r
,
θ
,
φ


{\displaystyle r,\theta ,\varphi }

) bilan aniqlanadi. Bu yerda





r




{\displaystyle {\displaystyle r}}

 — koordinatalar boshigacha boʻlgan masofa,





θ




{\displaystyle {\displaystyle \theta }}

va





φ




{\displaystyle {\displaystyle \varphi }}

— mos holda zenit va azimutal burchaklar.

Zenit va azimut tushunchalari astronomiyada keng qoʻllaniladi. Zenit — ixtiyoriy tanlangan nuqta (kuzatish nuqtasi) dan vertikal yuqoriga yoʻnalgan boʻlib, fundamental tekislikda yotadi. Astronomiyada fundamental tekislik sifatida ekvator yotgan tekislik yoki ekliptika tekisligi olinadi. Azimut — fundamental tekislikdagi ixtiyoriy tanlangan nur bilan boshlangʻich kuzatish nuqtasi orasidagi burchak.

Boshqa koordinata sistemalariga oʻtish



Dekart koordinatalar sistemasi



Agar nuqtaning sferik koordinatalari



(
r
,

θ
,

φ
)


{\displaystyle (r,\;\theta ,\;\varphi )}

berilgan boʻlsa, dekart koordinatalariga oʻtish uchun quyidagi formulalardan foydalaniladi:






{



x
=
r
sin

θ
cos

φ
,




y
=
r
sin

θ
sin

φ
,




z
=
r
cos

θ
.








{\displaystyle {\begin{cases}x=r\sin \theta \cos \varphi ,\\y=r\sin \theta \sin \varphi ,\\z=r\cos \theta .\end{cases}}}


Dekart koordinatalaridan sferik koordinatalarga oʻtish uchun esa:






{



r
=



x

2


+

y

2


+

z

2




,




θ
=
arccos




z


x

2


+

y

2


+

z

2






=

a
r
c
t
g






x

2


+

y

2



z



,




φ
=

a
r
c
t
g




y
x



.








{\displaystyle {\begin{cases}r={\sqrt {x^{2}+y^{2}+z^{2}}},\\\theta =\arccos {\dfrac {z}{\sqrt {x^{2}+y^{2}+z^{2}}}}=\mathrm {arctg} {\dfrac {\sqrt {x^{2}+y^{2}}}{z}},\\\varphi =\mathrm {arctg} {\dfrac {y}{x}}.\end{cases}}}


Sferik koordinatalarga oʻtish yakobiani:








J



=




(
x
,
y
,
z
)



(
r
,
θ
,
φ
)



=


|



sin

θ
cos

φ


r
cos

θ
cos

φ



r
sin

θ
sin

φ




sin

θ
sin

φ


r
cos

θ
sin

φ


r
sin

θ
cos

φ




cos

θ



r
sin

θ


0



|


=






=
cos

θ
(

r

2


cos


φ

2


cos

θ
sin

θ
+

r

2



sin

2



φ
cos

θ
sin

θ
)
+
r
sin

θ
(
r

sin

2



θ

cos

2



φ
+
r

sin

2



θ

sin

2



φ
)
=






=

r

2



cos

2



θ
sin

θ
+

r

2



sin

2



θ
sin

θ
=






=

r

2


sin

θ
.






{\displaystyle {\begin{alignedat}{2}J&={\frac {\partial (x,y,z)}{\partial (r,\theta ,\varphi )}}={\begin{vmatrix}\sin \theta \cos \varphi &r\cos \theta \cos \varphi &-r\sin \theta \sin \varphi \\\sin \theta \sin \varphi &r\cos \theta \sin \varphi &r\sin \theta \cos \varphi \\\cos \theta &-r\sin \theta &0\end{vmatrix}}=\\&=\cos \theta (r^{2}\cos \varphi ^{2}\cos \theta \sin \theta +r^{2}\sin ^{2}\varphi \cos \theta \sin \theta )+r\sin \theta (r\sin ^{2}\theta \cos ^{2}\varphi +r\sin ^{2}\theta \sin ^{2}\varphi )=\\&=r^{2}\cos ^{2}\theta \sin \theta +r^{2}\sin ^{2}\theta \sin \theta =\\&=r^{2}\sin \theta .\end{alignedat}}}


Shunday qilib, dekart koordinatalaridan sferik koordinatalarga oʻtishdagi hajm elementi quyidagi koʻrinishga ega boʻladi:





d

V
=

d

x


d

y


d

z
=
J
(
r
,
θ
,
φ
)


d

r


d

θ


d

φ
=

r

2


sin

θ



d

r


d

θ


d

φ


{\displaystyle \mathrm {d} V=\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z=J(r,\theta ,\varphi )\,\mathrm {d} r\,\mathrm {d} \theta \,\mathrm {d} \varphi =r^{2}\sin \theta \,\,\mathrm {d} r\,\mathrm {d} \theta \,\mathrm {d} \varphi }


Silindrik koordinatalar sistemasi



Agar nuqtaning silindrik koordinatalari berilgan boʻlsa, sferik koordinatalarga oʻtish uchun quyidagi formulalardan foydalaniladi:






{



ρ
=
r
sin

θ




φ
=
φ




z
=
r
cos

θ








{\displaystyle {\begin{cases}\rho =r\sin \theta \\\varphi =\varphi \\z=r\cos \theta \end{cases}}}


Yoki aksincha, sferik koordinatalardan silindrik koordinatalarga oʻtish uchun quyidagi formulalardan foydalaniladi:






{



r
=



ρ

2


+

z

2




,




θ
=

a
r
c
t
g




ρ
z



,




φ
=
φ
.








{\displaystyle {\begin{cases}r={\sqrt {\rho ^{2}+z^{2}}},\\\theta =\mathrm {arctg} {\dfrac {\rho }{z}},\\\varphi =\varphi .\end{cases}}}


Silindrik koordinatalardan sferik koordinatalarga oʻtish yakobiani :




J
=
r


{\displaystyle J=r}


Sferik koordinatalar sistemasida differensiallash va integrallash







(
r
,
θ
,
φ
)


{\displaystyle (r,\theta ,\varphi )}

nuqtadan



(
r
+

d

r
,

θ
+

d

θ
,

φ
+

d

φ
)


{\displaystyle (r+\mathrm {d} r,\,\theta +\mathrm {d} \theta ,\,\varphi +\mathrm {d} \varphi )}

nuqtaga oʻtkazilgan vektor




d


r



{\displaystyle \mathrm {d} \mathbf {r} }

ning uzunligi quyidagiga teng:





d


r

=

d

r




r
^



+
r


d

θ




θ
^



+
r
sin


θ



d

φ




φ
^



,


{\displaystyle \mathrm {d} \mathbf {r} =\mathrm {d} r\,{\boldsymbol {\hat {r}}}+r\,\mathrm {d} \theta \,{\boldsymbol {\hat {\theta }}}+r\sin {\theta }\,\mathrm {d} \varphi \,\mathbf {\boldsymbol {\hat {\varphi }}} ,}


bu yerda







r
^



=
sin

θ
cos

φ



ı
^



+
sin

θ
sin

φ



ȷ
^



+
cos

θ



k
^





{\displaystyle {\boldsymbol {\hat {r}}}=\sin \theta \cos \varphi {\boldsymbol {\hat {\imath }}}+\sin \theta \sin \varphi {\boldsymbol {\hat {\jmath }}}+\cos \theta {\boldsymbol {\hat {k}}}}








θ
^



=
cos

θ
cos

φ



ı
^



+
cos

θ
sin

φ



ȷ
^




sin

θ



k
^





{\displaystyle {\boldsymbol {\hat {\theta }}}=\cos \theta \cos \varphi {\boldsymbol {\hat {\imath }}}+\cos \theta \sin \varphi {\boldsymbol {\hat {\jmath }}}-\sin \theta {\boldsymbol {\hat {k}}}}








φ
^



=

sin

φ



ı
^



+
cos

φ



ȷ
^





{\displaystyle {\boldsymbol {\hat {\varphi }}}=-\sin \varphi {\boldsymbol {\hat {\imath }}}+\cos \varphi {\boldsymbol {\hat {\jmath }}}}


Sferik koordinatalar ortogonal hisoblanadi. Shu sababli ularning metrik tenzori diagonal koʻrinishda boʻladi:





g

i
j


=


(



1


0


0




0



r

2




0




0


0



r

2



sin

2



θ



)


,


g

i
j


=


(



1


0


0




0





1

r

2







0




0


0





1


r

2



sin

2



θ







)




{\displaystyle g_{ij}={\begin{pmatrix}1&0&0\\0&r^{2}&0\\0&0&r^{2}\sin ^{2}\theta \end{pmatrix}},\quad g^{ij}={\begin{pmatrix}1&0&0\\0&{\dfrac {1}{r^{2}}}&0\\0&0&{\dfrac {1}{r^{2}\sin ^{2}\theta }}\end{pmatrix}}}





d

s

2


=
d

r

2


+

r

2



d

θ

2


+

r

2



sin

2



θ

d

φ

2


.


{\displaystyle ds^{2}=dr^{2}+r^{2}\,d\theta ^{2}+r^{2}\sin ^{2}\theta \,d\varphi ^{2}.}






H

r


=
1
,


H

θ


=
r
,


H

φ


=
r
sin

θ
.


{\displaystyle H_{r}=1,\quad H_{\theta }=r,\quad H_{\varphi }=r\sin \theta .}






Γ

22


1


=

r
,


Γ

33


1


=

r

sin

2



θ
,


{\displaystyle \Gamma _{22}^{1}=-r,\quad \Gamma _{33}^{1}=-r\sin ^{2}\theta ,}






Γ

21


2


=

Γ

12


2


=

Γ

13


3


=

Γ

31


3


=


1
r


,


{\displaystyle \Gamma _{21}^{2}=\Gamma _{12}^{2}=\Gamma _{13}^{3}=\Gamma _{31}^{3}={\frac {1}{r}},}






Γ

33


2


=

cos

θ
sin

θ
,


Γ

23


3


=

Γ

32


3


=

c
t
g


θ
.


{\displaystyle \Gamma _{33}^{2}=-\cos \theta \sin \theta ,\quad \Gamma _{23}^{3}=\Gamma _{32}^{3}=\mathrm {ctg} \,\theta .}


Sferik koordinatalar sistemasida masofa



Fazodagi vaziyati sferik koordinatalar sistemasida berilgan ikki nuqtaning joylashuvi quyidagicha boʻlsin:










r





=
(
r
,
θ
,
φ
)
,







r







=
(

r


,

θ


,

φ


)






{\displaystyle {\begin{aligned}{\mathbf {r} }&=(r,\theta ,\varphi ),\\{\mathbf {r} '}&=(r',\theta ',\varphi ')\end{aligned}}}


U holda ushbu nuqtalar orasidagi masofani quyidagi formula orqali hisoblash mumkin:










D





=



r

2


+

r



2




2
r

r


(
sin


θ

sin



θ



cos


(
φ


φ


)

+
cos


θ

cos



θ



)








{\displaystyle {\begin{aligned}{\mathbf {D} }&={\sqrt {r^{2}+r'^{2}-2rr'(\sin {\theta }\sin {\theta '}\cos {(\varphi -\varphi ')}+\cos {\theta }\cos {\theta '})}}\end{aligned}}}


Harakat tenglamasi



Nuqtaning vaziyati sferik koordinatalarda quyidagi koʻrinishda berilgan boʻlsin:





r

=
r



r
^



.


{\displaystyle \mathbf {r} =r\mathbf {\hat {r}} .}


U holda uning tezligi:





v

=



r
˙






r
^



+
r




θ
˙







θ
^



+
r




φ
˙



sin

θ




φ
^



,


{\displaystyle \mathbf {v} ={\dot {r}}\mathbf {\hat {r}} +r\,{\dot {\theta }}\,{\hat {\boldsymbol {\theta }}}+r\,{\dot {\varphi }}\sin \theta \,\mathbf {\hat {\boldsymbol {\varphi }}} ,}


hamda tezlanishi:









a

=






(




r
¨




r





θ
˙




2



r





φ
˙




2



sin

2



θ

)




r
^












+

(

r




θ
¨



+
2



r
˙







θ
˙




r





φ
˙




2


sin

θ
cos

θ

)




θ
^












+

(

r



φ
¨




sin

θ
+
2



r
˙







φ
˙




sin

θ
+
2
r




θ
˙







φ
˙




cos

θ

)




φ
^



.






{\displaystyle {\begin{aligned}\mathbf {a} ={}&\left({\ddot {r}}-r\,{\dot {\theta }}^{2}-r\,{\dot {\varphi }}^{2}\sin ^{2}\theta \right)\mathbf {\hat {r}} \\&{}+\left(r\,{\ddot {\theta }}+2{\dot {r}}\,{\dot {\theta }}-r\,{\dot {\varphi }}^{2}\sin \theta \cos \theta \right){\hat {\boldsymbol {\theta }}}\\&{}+\left(r{\ddot {\varphi }}\,\sin \theta +2{\dot {r}}\,{\dot {\varphi }}\,\sin \theta +2r\,{\dot {\theta }}\,{\dot {\varphi }}\,\cos \theta \right){\hat {\boldsymbol {\varphi }}}.\end{aligned}}}


ga teng boʻladi.

Burchak momenti:





L

=
m

r

×

v

=
m

r

2


(



θ
˙







φ
^







φ
˙



sin

θ




θ
^



)
.


{\displaystyle \mathbf {L} =m\mathbf {r} \times \mathbf {v} =mr^{2}({\dot {\theta }}\,{\hat {\boldsymbol {\varphi }}}-{\dot {\varphi }}\sin \theta \,\mathbf {\hat {\boldsymbol {\theta }}} ).}





φ


{\displaystyle \varphi }

oʻzgarmas boʻlganda yoki



θ
=


π
2




{\displaystyle \theta ={\frac {\pi }{2}}}

boʻlganda, moddiy nuqtaning harakat tenglamasi qutb koordinatalar sistemasiga oʻtadi.





L

=

i

 

r

×

=
i


(





θ
^



sin

(
θ
)








ϕ







ϕ
^








θ




)

.


{\displaystyle \mathbf {L} =-i\hbar ~\mathbf {r} \times \nabla =i\hbar \left({\frac {\hat {\boldsymbol {\theta }}}{\sin(\theta )}}{\frac {\partial }{\partial \phi }}-{\hat {\boldsymbol {\phi }}}{\frac {\partial }{\partial \theta }}\right).}


Yana qarang




Manbalar




uz.wikipedia.org

Sun'iy intellekt javobi:

Sferik koordinatalar — bu fazodagi nuqtalarning joylashuvini ifodalash uchun ishlatiladigan koordinata tizimidir. U uch o‘lchovli fazoda nuqtani uchta parametr yordamida ko‘rsatadi: radius (masofa), zenit burchagi va azimut burchagi. Sferik koordinatalar tizimi ayniqsa geometriya, fizika, astronomiya, va muhandislikda keng qo‘llaniladi.

Sferik koordinatalarning asosiy elementlari:

  1. Radius (r)
    Bu nuqtaning koordinata boshlang‘ich nuqtasidan (odatda, fazo boshidan) bo‘lgan masofasidir. Radius doimo manfiy bo‘lmaydi, ya’ni r ≥ 0.

  2. Zenit burchagi (θ)
    Bu burchak z o‘qi bilan nuqtadan boshqacha burchak bo‘lib, odatda 0 dan π (0 dan 180° gacha) qiymat oladi. U nuqtaning vertikal yo‘nalishdagi joylashuvini ifodalaydi.

  3. Azimut burchagi (φ)
    Bu burchak xy tekisligidagi nuqtaning proeksiyasining x o‘qiga nisbatan burchagidir. Azimut burchagi 0 dan 2π (0 dan 360° gacha) qiymat oladi. Bu burchak nuqtaning gorizontal yo‘nalishdagi joylashuvini ko‘rsatadi.


Matematik ifodasi:

Berilgan nuqta (P) sferik koordinatalari ( (r, \theta, \phi) ) bo‘lsa, uning Dekart koordinatalari ( (x, y, z) ) quyidagicha ifodalanadi:

[ \begin{cases} x = r \sin\theta \cos\phi \ y = r \sin\theta \sin\phi \ z = r \cos\theta \end{cases} ]

Aksincha, Dekart koordinatalardan sferik koordinatalarni hisoblash formulalari:

[ r = \sqrt{x^2 + y^2 + z^2} ]

[ \theta = \arccos \left(\frac{z}{r}\right) ]

[ \phi = \arctan2(y, x) ]

Bu yerda (\arctan2(y, x)) funktsiyasi y va x koordinatalarning ishora va kvadrantini hisobga olgan holda burchakni beradi.


Sferik koordinatalarning qo‘llanilishi:


Misol:

Aytaylik, (r = 5), (\theta = \frac{\pi}{3}) (60°), va (\phi = \frac{\pi}{4}) (45°) bo‘lsa, nuqtaning Dekart (x, y, z) koordinatalarini hisoblaymiz:

[ x = 5 \times \sin(60°) \times \cos(45°) = 5 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \approx 3.06 ]

[ y = 5 \times \sin(60°) \times \sin(45°) = 5 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \approx 3.06 ]

[ z = 5 \times \cos(60°) = 5 \times \frac{1}{2} = 2.5 ]

Demak, nuqta Dekart tizimida taxminan ((3.06, 3.06, 2.5)) koordinatalariga ega.


Umuman olganda, sferik koordinatalar fazoda nuqtalarni ifodalashning samarali va oson usullaridan biri bo‘lib, aniq geometriya va fizika masalalarini hal qilishda ishlatiladi.



Loyiha rivoji uchun hayriya qiling: 9860 3501 4465 8134. @Shaka_rj
Maqsad sun'iy intellekt javoblarini ko'paytirish

Uzpedia.uz