Riman differentsial tenglamasi




Rieman differensial tenglamasi gipergeometrik tenglamani umumlashtirish boʻlib, u sizga muntazam yagona nuqtalar(ingl.)oʻzb. olish imkonini beradi. ) Riman sferasining istalgan nuqtasida. Matematik Bernxard Rimann sharafiga nomlangan.

Taʼrif



Rieman differensial tenglamasi quyidagicha aniqlanadi








d

2


w


d

z

2





+

[




1

α


α




z

a



+



1

β


β




z

b



+



1

γ


γ




z

c




]




d
w


d
z





{\displaystyle {\frac {d^{2}w}{dz^{2}}}+\left[{\frac {1-\alpha -\alpha '}{z-a}}+{\frac {1-\beta -\beta '}{z-b}}+{\frac {1-\gamma -\gamma '}{z-c}}\right]{\frac {dw}{dz}}}





+

[




α

α


(
a

b
)
(
a

c
)


z

a



+



β

β


(
b

c
)
(
b

a
)


z

b



+



γ

γ


(
c

a
)
(
c

b
)


z

c




]



w

(
z

a
)
(
z

b
)
(
z

c
)



=
0.


{\displaystyle +\left[{\frac {\alpha \alpha '(a-b)(a-c)}{z-a}}+{\frac {\beta \beta '(b-c)(b-a)}{z-b}}+{\frac {\gamma \gamma '(c-a)(c-b)}{z-c}}\right]{\frac {w}{(z-a)(z-b)(z-c)}}=0.}


Uning muntazam yagona nuqtalari a, b va c boʻladi. Ularning darajalari



α


{\displaystyle \alpha }

va




α




{\displaystyle \alpha '}

,



β


{\displaystyle \beta }

va




β




{\displaystyle \beta '}

,



γ


{\displaystyle \gamma }

va




γ




{\displaystyle \gamma '}

mos ravishda. Ular shartlarni qanoatlantiradi.




α
+

α


+
β
+

β


+
γ
+

γ


=
1.


{\displaystyle \alpha +\alpha '+\beta +\beta '+\gamma +\gamma '=1.}


Tenglama yechimlari



Riman tenglamasining yechimlari Riman doim P belgisi bilan yoziladi




w
=
P

{




a


b


c







α


β


γ


z





α





β





γ









}



{\displaystyle w=P\left\{{\begin{matrix}a&b&c&\;\\\alpha &\beta &\gamma &z\\\alpha '&\beta '&\gamma '&\;\end{matrix}}\right\}}


Odatiy gipergeometrik funktsiyani quyidagicha yozish mumkin boʻladi







2



F

1


(
a
,
b
;
c
;
z
)
=
P

{




0





1







0


a


0


z




1

c


b


c

a

b







}



{\displaystyle \;_{2}F_{1}(a,b;c;z)=P\left\{{\begin{matrix}0&\infty &1&\;\\0&a&0&z\\1-c&b&c-a-b&\;\end{matrix}}\right\}}


P-funksiyalar bir qancha oʻziga xosliklarga boʻysunadi, ulardan biri ularni gipergeometrik funksiyalar nuqtai nazaridan umumlashtirish imkonini beradi. Yaʼni, u ifoda quyidagicha




P

{




a


b


c







α


β


γ


z





α





β





γ









}

=


(



z

a


z

b



)


α




(



z

c


z

b



)


γ


P

{




0





1







0


α
+
β
+
γ


0






(
z

a
)
(
c

b
)


(
z

b
)
(
c

a
)








α



α


α
+

β


+
γ



γ



γ







}



{\displaystyle P\left\{{\begin{matrix}a&b&c&\;\\\alpha &\beta &\gamma &z\\\alpha '&\beta '&\gamma '&\;\end{matrix}}\right\}=\left({\frac {z-a}{z-b}}\right)^{\alpha }\left({\frac {z-c}{z-b}}\right)^{\gamma }P\left\{{\begin{matrix}0&\infty &1&\;\\0&\alpha +\beta +\gamma &0&\;{\frac {(z-a)(c-b)}{(z-b)(c-a)}}\\\alpha '-\alpha &\alpha +\beta '+\gamma &\gamma '-\gamma &\;\end{matrix}}\right\}}


shaklda tenglamaning yechimini yozish imkonini beradi




w
=


(



z

a


z

b



)


α




(



z

c


z

b



)


γ





2



F

1



(

α
+
β
+
γ
,
α
+

β


+
γ
;
1
+
α


α


;



(
z

a
)
(
c

b
)


(
z

b
)
(
c

a
)




)



{\displaystyle w=\left({\frac {z-a}{z-b}}\right)^{\alpha }\left({\frac {z-c}{z-b}}\right)^{\gamma }\;_{2}F_{1}\left(\alpha +\beta +\gamma ,\alpha +\beta '+\gamma ;1+\alpha -\alpha ';{\frac {(z-a)(c-b)}{(z-b)(c-a)}}\right)}


Mebius transformatsiyasi



p-funksiya Mebius oʻzgarishiga nisbatan oddiy simmetriyaga ega, yaʼni GL(2,  C ) yoki ekvivalenti bilan Riman sferasining konformal xaritasi deyiladi . Oʻzboshimchalik bilan tanlangan toʻrtta kompleks sonlar A, B, C va D shartni qondiradi



A
D

B
C

0


{\displaystyle AD-BC\neq 0}

, nisbatlarini aniqlang.




u
=



A
z
+
B


C
z
+
D





 and 


η
=



A
a
+
B


C
a
+
D





{\displaystyle u={\frac {Az+B}{Cz+D}}\quad {\text{ and }}\quad \eta ={\frac {Aa+B}{Ca+D}}}

va




ζ
=



A
b
+
B


C
b
+
D





 and 


θ
=



A
c
+
B


C
c
+
D



.


{\displaystyle \zeta ={\frac {Ab+B}{Cb+D}}\quad {\text{ and }}\quad \theta ={\frac {Ac+B}{Cc+D}}.}


Keyingi tenglik




P

{




a


b


c







α


β


γ


z





α





β





γ









}

=
P

{




η


ζ


θ







α


β


γ


u





α





β





γ









}



{\displaystyle P\left\{{\begin{matrix}a&b&c&\;\\\alpha &\beta &\gamma &z\\\alpha '&\beta '&\gamma '&\;\end{matrix}}\right\}=P\left\{{\begin{matrix}\eta &\zeta &\theta &\;\\\alpha &\beta &\gamma &u\\\alpha '&\beta '&\gamma '&\;\end{matrix}}\right\}}


Adabiyotlar




uz.wikipedia.org

Uzpedia.uz