Limit bo'yicha taqqoslash alomati (testi)




Matematikada limit bo'yicha taqqoslash alomati (testi) (taqqoslash alomatidan farqli o'laroq) cheksiz qatorlarning yaqinlashishini tekshirish usuli hisoblanadi.

Sharti



Aytaylik, bizda ikkita




Σ

n



a

n




{\displaystyle \Sigma _{n}a_{n}}

va




Σ

n



b

n




{\displaystyle \Sigma _{n}b_{n}}

qatorlar berilgan bo'lib, barcha



n


{\displaystyle n}

lar uchun




a

n



0
,

b

n


>
0


{\displaystyle a_{n}\geq 0,b_{n}>0}

munosabat o'rinli bo'lsin. Agar




lim

n







a

n



b

n




=
c


{\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c}

munosabat



0
<
c
<



{\displaystyle 0<c<\infty }

uchun o'rinli bo'lsa, u holda har ikkala qator yaqinlashadi yoki har ikkala qator uzoqlashadi.

Isbot








lim

n







a

n



b

n




=
c


{\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c}

bo'lganligi uchun barcha



ε
>
0


{\displaystyle \varepsilon >0}

sonlar uchun shunday




n

0




{\displaystyle n_{0}}

musbat butun son mavjudki, bunda barcha



n


n

0




{\displaystyle n\geq n_{0}}

lar uchun




|




a

n



b

n





c

|

<
ε


{\displaystyle \left|{\frac {a_{n}}{b_{n}}}-c\right|<\varepsilon }

munosabat, yoki shunga ekvivalent ravishda





ε
<



a

n



b

n





c
<
ε


{\displaystyle -\varepsilon <{\frac {a_{n}}{b_{n}}}-c<\varepsilon }





c

ε
<



a

n



b

n




<
c
+
ε


{\displaystyle c-\varepsilon <{\frac {a_{n}}{b_{n}}}<c+\varepsilon }





(
c

ε
)

b

n


<

a

n


<
(
c
+
ε
)

b

n




{\displaystyle (c-\varepsilon )b_{n}<a_{n}<(c+\varepsilon )b_{n}}


munosabatlar o'rinli.




c
>
0


{\displaystyle c>0}

bo'lganligi uchun



ε


{\displaystyle \varepsilon }

ni shunday yetarlicha kichik tanlashimiz mumkinki, bunda



c

ε


{\displaystyle c-\varepsilon }

musbat bo'ladi. Shunday qilib,




b

n


<


1

c

ε




a

n




{\displaystyle b_{n}<{\frac {1}{c-\varepsilon }}a_{n}}

va taqqoslash alomatiga ko'ra, agar






n



a

n




{\displaystyle \sum _{n}a_{n}}

yaqinlashsa, u holda






n



b

n




{\displaystyle \sum _{n}b_{n}}

ham yaqinlashadi.

Xuddi shunday,




a

n


<
(
c
+
ε
)

b

n




{\displaystyle a_{n}<(c+\varepsilon )b_{n}}

munosabat o'rinli va taqqoslash testiga ko'ra






n



a

n




{\displaystyle \sum _{n}a_{n}}

uzoqlashsa, u holda






n



b

n




{\displaystyle \sum _{n}b_{n}}

ham uzoqlashadi.

Ya'ni, har ikkala qator yaqinlashadi yoki har ikkala qator uzoqlashadi.

Misol










n
=
1







1


n

2


+
2
n





{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+2n}}}

qatorni yaqinlashishga tekshiramiz. Buning uchun uni yaqinlashuvchi bo'lgan






n
=
1







1

n

2




=



π

2


6




{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}

qator bilan taqqoslaymiz.





lim

n






1


n

2


+
2
n






n

2


1


=
1
>
0


{\displaystyle \lim _{n\to \infty }{\frac {1}{n^{2}+2n}}{\frac {n^{2}}{1}}=1>0}

ekanligidan, berilgan qatorning ham yaqinlashuvchi bo'lishi kelib chiqadi.

Bir tomonlama versiya: bir tomonlama taqqoslash alomati



Bir tomonlama taqqoslash alomati (testi) yuqori limitni qo'llagan holda keltirilishi mumkin. Barcha



n


{\displaystyle n}

lar uchun




a

n


,

b

n



0


{\displaystyle a_{n},b_{n}\geq 0}

bo'lsin. U holda agar




lim sup

n







a

n



b

n




=
c


{\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c}

munosabat



0

c
<



{\displaystyle 0\leq c<\infty }

uchun o'rinli bo'lsa va




Σ

n



b

n




{\displaystyle \Sigma _{n}b_{n}}

qator yaqinlashuvchi bo'lsa, u holda zaruriy ravishda




Σ

n



a

n




{\displaystyle \Sigma _{n}a_{n}}

qator ham yaqinlashadi.

Misol



Barcha natural



n


{\displaystyle n}

lar uchun




a

n


=



1

(

1

)

n




n

2






{\displaystyle a_{n}={\frac {1-(-1)^{n}}{n^{2}}}}

va




b

n


=


1

n

2






{\displaystyle b_{n}={\frac {1}{n^{2}}}}

bo'lsin. Ushbu




lim

n







a

n



b

n




=

lim

n




(
1

(

1

)

n


)


{\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\lim _{n\to \infty }(1-(-1)^{n})}

limit mavjud bo'lmaganligi uchun biz odatiy taqqoslash alomatini qo'llay olmaymiz. Ammo,




lim sup

n







a

n



b

n




=

lim sup

n




(
1

(

1

)

n


)
=
2

[
0
,

)


{\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\limsup _{n\to \infty }(1-(-1)^{n})=2\in [0,\infty )}

munosabatdan va






n
=
1







1

n

2






{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}

ning yaqinlashuvchi ekanligidan, bir tomonlama taqqoslash alomatiga ko'ra






n
=
1








1

(

1

)

n




n

2






{\displaystyle \sum _{n=1}^{\infty }{\frac {1-(-1)^{n}}{n^{2}}}}

qator yaqinlashuvchi bo'ladi.

Bir tomonlama taqqoslash alomatining teskarisi



Barcha



n


{\displaystyle n}

lar uchun




a

n


,

b

n



0


{\displaystyle a_{n},b_{n}\geq 0}

bo'lsin. Agar




Σ

n



a

n




{\displaystyle \Sigma _{n}a_{n}}

qator uzoqlashuvchi bo'lib,




Σ

n



b

n




{\displaystyle \Sigma _{n}b_{n}}

qator yaqinlashuvchi bo'lsa, u holda zaruriy ravishda




lim sup

n







a

n



b

n




=



{\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\infty }

, qaysiki,




lim inf

n







b

n



a

n




=
0


{\displaystyle \liminf _{n\to \infty }{\frac {b_{n}}{a_{n}}}=0}

munosabat o'rinli bo'ladi. Bu yerda asosiy mazmun, qaysidir ma'noda,




a

n




{\displaystyle a_{n}}

larning




b

n




{\displaystyle b_{n}}

lardan kattaroq ekanligidadir.

Misol







D
=
{
z


C

:

|

z

|

<
1
}


{\displaystyle D=\{z\in \mathbb {C} :|z|<1\}}

birlik diskda analitik bo'lgan



f
(
z
)
=



n
=
0






a

n



z

n




{\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}}

berilgan bo'lib, u chekli yuzali tasvirga (aksga) ega bo'lsin. Parseval formulasi bo'yicha



f


{\displaystyle f}

ning tasviri(aks)ning yuzasi






n
=
1





n

|


a

n




|


2




{\displaystyle \sum _{n=1}^{\infty }n|a_{n}|^{2}}

ga teng. Bundan tashqari,






n
=
1





1

/

n


{\displaystyle \sum _{n=1}^{\infty }1/n}

qator uzoqlashuvchi. Shuning uchun, taqqoslash alomatining teskarisi bo'yicha,




lim inf

n







n

|


a

n




|


2




1

/

n



=

lim inf

n




(
n

|


a

n



|


)

2


=
0


{\displaystyle \liminf _{n\to \infty }{\frac {n|a_{n}|^{2}}{1/n}}=\liminf _{n\to \infty }(n|a_{n}|)^{2}=0}

, qaysiki,




lim inf

n




n

|


a

n



|

=
0


{\displaystyle \liminf _{n\to \infty }n|a_{n}|=0}

.

Yana qarang




Manbalar




Qo'shimcha manbalar




Havolalar




uz.wikipedia.org

Uzpedia.uz