Kyoning teoremasi (kinetika)
Kinetikada
König teoremasi yoki
Königning parchalanishi Iogann Samuel König tomonidan olingan matematik munosabat bo'lib, jismlar va zarralar tizimlarining burchak momenti va kinetik energiyalarini hisoblashda yordam beradi.
Zarrachalar tizimi uchun
Teorema ikki qismga bo'lingan.
Kyoning teoremasining birinchi qismi
Birinchi qism tizimning burchak momenti massa markazining burchak momenti va massa markaziga nisbatan zarrachalarga tatbiq etilgan burchak momentining yig'indisi sifatida ifodalaydi.
L
→
=
r
→
C
o
M
×
∑
i
m
i
v
→
C
o
M
+
L
→
′
=
L
→
C
o
M
+
L
→
′
{\displaystyle \displaystyle {\vec {L}}={\vec {r}}_{CoM}\times \sum \limits _{i}m_{i}{\vec {v}}_{CoM}+{\vec {L}}'={\vec {L}}_{CoM}+{\vec {L}}'}
Isbot Koordinata boshi O bo'lgan inersial sanoq sistemasini hisobga olsak, tizimning burchak momentini quyidagicha aniqlash mumkin:
L
→
=
∑
i
(
r
→
i
×
m
i
v
→
i
)
{\displaystyle {\vec {L}}=\sum \limits _{i}({\vec {r}}_{i}\times m_{i}{\vec {v}}_{i})}
Bitta zarrachaning joylashishini quyidagicha ifodalash mumkin:
r
→
i
=
r
→
C
o
M
+
r
→
i
′
{\displaystyle {\vec {r}}_{i}={\vec {r}}_{CoM}+{\vec {r}}'_{i}}
Shunday qilib, biz bitta zarrachaning tezligini aniqlashimiz mumkin:
v
→
i
=
v
→
C
o
M
+
v
→
i
′
{\displaystyle {\vec {v}}_{i}={\vec {v}}_{CoM}+{\vec {v}}'_{i}}
Birinchi tenglama quyidagiga keladi:
L
→
=
∑
i
(
r
→
C
o
M
+
r
→
i
′
)
×
m
i
(
v
→
C
o
M
+
v
→
i
′
)
{\displaystyle {\vec {L}}=\sum \limits _{i}({\vec {r}}_{CoM}+{\vec {r}}'_{i})\times m_{i}({\vec {v}}_{CoM}+{\vec {v}}'_{i})}
L
→
=
∑
i
r
→
i
′
×
m
i
v
→
i
′
+
(
∑
i
m
i
r
→
i
′
)
×
v
→
C
o
M
+
r
→
C
o
M
×
∑
i
m
i
v
→
i
′
+
∑
i
r
→
C
o
M
×
m
i
v
→
C
o
M
{\displaystyle {\vec {L}}=\sum \limits _{i}{\vec {r}}'_{i}\times m_{i}{\vec {v}}'_{i}+\left(\sum \limits _{i}m_{i}{\vec {r}}'_{i}\right)\times {\vec {v}}_{CoM}+{\vec {r}}_{CoM}\times \sum \limits _{i}m_{i}{\vec {v}}'_{i}+\sum \limits _{i}{\vec {r}}_{CoM}\times m_{i}{\vec {v}}_{CoM}}
Ammo quyidagi shartlar nolga teng:
∑
i
m
i
r
→
i
′
=
0
{\displaystyle \sum \limits _{i}m_{i}{\vec {r}}'_{i}=0}
∑
i
m
i
v
→
i
′
=
0
{\displaystyle \sum \limits _{i}m_{i}{\vec {v}}'_{i}=0}
Shunday qilib, isbotlandi:
L
→
=
∑
i
r
→
i
′
×
m
i
v
→
i
′
+
M
r
→
C
o
M
×
v
→
C
o
M
{\displaystyle {\vec {L}}=\sum \limits _{i}{\vec {r}}'_{i}\times m_{i}{\vec {v}}'_{i}+M{\vec {r}}_{CoM}\times {\vec {v}}_{CoM}}
bu yerda M - tizimning umumiy massasi .
Qattiq jism uchun
Teoremani qattiq jismlarga ham qo'llash mumkin, bunda ba'zi bir inersial sanoq sistemasida o'rnatilgan N kuzatuvchi tomonidan ko'rilganidek qattiq jismning kinetik energiyasi K, quyidagicha yozilishi mumkin:
N
K
=
1
2
m
⋅
N
v
¯
⋅
N
v
¯
+
1
2
N
H
¯
⋅
N
ω
R
{\displaystyle ^{N}K={\frac {1}{2}}m\cdot {^{N}\mathbf {\bar {v}} }\cdot {^{N}\mathbf {\bar {v}} }+{\frac {1}{2}}{^{N}\!\mathbf {\bar {H}} }\cdot ^{N}{\!\!\mathbf {\omega } }^{R}}
bu yerda
m
{\displaystyle {m}}
- qattiq jismning massasi;
N
v
¯
{\displaystyle {^{N}\mathbf {\bar {v}} }}
- inersial sanoq sistemasida N o'rnatilgan kuzatuvchi tomonidan ko'rilgan qattiq jismning massa markazining tezligi;
N
H
¯
{\displaystyle {^{N}\!\mathbf {\bar {H}} }}
- N inersial sanoq sistemasidagi qattiq jismning massa markaziga nisbatan burchak impulsi; va
N
ω
R
{\displaystyle ^{N}{\!\!\mathbf {\omega } }^{R}}
- N inersial sanoq sistemasiga nisbatan qattiq jismning burchak tezligi R
Foydalanilgan adabiyotlar ro'yxati
Iqtiboslar
uz.wikipedia.org