Kometabolizm
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.
Kometabolizm ikki birikmaning bir vaqtning o'zida degradatsiyasi sifatida aniqlanadi, bunda ikkinchi birikmaning (ikkilamchi substrat ) degradatsiyasi birinchi birikma (birlamchi substrat ) mavjudligiga bog'liq. Bu har bir substrat turli fermentlar tomonidan bir vaqtning o'zida katabolize bo'lgan bir vaqtning o'zida
katabolizmadan farq qiladi. Kometabolizm organizm tomonidan uning o'sishi degradatsiyasini katalizlash uchun ishlab chiqarilgan ferment-undan energiya va uglerod olish uchun substrat ham qo'shimcha birikmalarni parchalashga qodir bo'lganda paydo bo'ladi.Ushbu qo'shimcha birikmalarning tasodifiy degradatsiyasi bakteriyalarning o'sishini qo'llab-quvvatlamaydi va bu birikmalarning ba'zilari bakteriyalar uchun ma'lum konsentratsiyalarda hatto toksik bo'lishi ham mumkin.
Ushbu hodisaning birinchi hisoboti etanning Pseudomonas methanica(<a href="https://en.wikipedia.org/wiki/Pseudomonas_methanica" rel="mw:ExtLink" title="Pseudomonas methanica" class="mw-redirect cx-link" data-linkid="15">Pseudomonas methanica</a>) turlari tomonidan parchalanishi edi. Bu bakteriyalar metan monooksigenaza (MMO)(<a href="https://en.wikipedia.org/wiki/Methane_monooxygenase" rel="mw:ExtLink" title="Methane monooxygenase" class="cx-link" data-linkid="17">methane monooxygenase (MMO)</a>) fermenti yordamida o'sish-substrat metanini parchalaydi. MMO etan va propanni parchalash qobiliyatiga ega ekanligi aniqlandi, ammo bakteriyalar o'sishi bu birikmalardan energiya va uglerod manbalari sifatida foydalana olmagan.
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this enzyme also oxidizes, at no additional cost for M. vaccae, cyclohexane into cyclohexanol. Thus, cyclohexane is co-metabolized in the presence of propane. This allows for the commensal growth of Pseudomonas on cyclohexane. The latter can metabolize cyclohexanol, but not cyclohexane.
uz.wikipedia.org