Hosilani hisoblash




HOSILANI HISOBLASH QOIDALARI



1. Ikki funksiya yigʻindisi, ayirmasi, koʻpaytmasi va nisbatining hosilasi. Aytaylik f (x) va g (x) funksiyalari (a, b)






{\displaystyle \subset }

R da

berilgan boʻlib,




x

0




{\displaystyle x_{0}}








{\displaystyle \in }

(a, b) nuqtada




f


(

x

0


)


{\displaystyle f'(x_{0})}

va




g


(

x

0


)


{\displaystyle g'(x_{0})}

hosilalarga ega boʻlsin.

Hosila taʼrifiga koʻra





lim

n






{\displaystyle \lim _{n\to \infty }}








f
(
x
)

f
(

x

0


)


x


x

0





=

f


(

x

0


)


{\displaystyle {f(x)-f(x_{0}) \over x-x_{0}}=f'(x_{0})}

, (1)





lim

n






{\displaystyle \lim _{n\to \infty }}








g
(
x
)

g
(

x

0


)


x


x

0





=

g


(

x

0


)


{\displaystyle {g(x)-g(x_{0}) \over x-x_{0}}=g'(x_{0})}

(2)

boʻladi.

1)



f
(
x
)
±
g
(
x
)


{\displaystyle f(x)\pm g(x)}

funksiya




x

0




{\displaystyle x_{0}}

nuqtada hosilaga ega boʻlib,




(
f
(
x
)
±
g
(
x
)

)

x



=

f


(

x

0


)
±

g


(

x

0


)


{\displaystyle (f(x)\pm g(x))'_{x}=f'(x_{0})\pm g'(x_{0})}





(
f
(
x
)
±
g
(
x
)

)

x



=

f


(

x

0


)
±

g


(

x

0


)


{\displaystyle (f(x)\pm g(x))'_{x}=f'(x_{0})\pm g'(x_{0})}


boʻladi.





F
(
x
)
=
f
(
x
)
±
g
(
x
)


{\displaystyle \blacktriangleleft F(x)=f(x)\pm g(x)}

deb topamiz:







F
(
x
)

F
(

x

0


)


x


x

0





=



f
(
x
)

f
(

x

0


)


x


x

0





±



g
(
x
)

g
(

x

0


)


x


x

0





.


{\displaystyle {F(x)-F(x_{0}) \over x-x_{0}}={f(x)-f(x_{0}) \over x-x_{0}}\pm {g(x)-g(x_{0}) \over x-x_{0}}.}


Bu tenglikda



x


x

0




{\displaystyle x\rightarrow x_{0}}

da limitga oʻtib, yuqoridagi munosabatlarni eʼtiborga olsak. Unda





lim

n


x

0







F
(
x
)

F
(

x

0


)


x


x

0





=

lim

n


x

0




=



f
(
x
)
+
f
(

x

0


)


x


x

0





±


{\displaystyle \lim _{n\to x_{0}}{F(x)-F(x_{0}) \over x-x_{0}}=\lim _{n\to x_{0}}={f(x)+f(x_{0}) \over x-x_{0}}\pm }





±

lim

n


x

0







g
(
x
)

g
(

x

0


)


x


x

0





=

f


(

x

0


)
±

g


(

x

0


)


{\displaystyle \pm \lim _{n\to x_{0}}{g(x)-g(x_{0}) \over x-x_{0}}=f'(x_{0})\pm g'(x_{0})}


boʻlishi kelib chiqadi. Demak,





F


(

x

0


)
=
(
f
(
x
)
±
g
(
x
)

)

x



=

f


(

x

0


)
±

g


(

x

0


)
.



{\displaystyle F'(x_{0})=(f(x)\pm g(x))'_{x}=f'(x_{0})\pm g'(x_{0}).\blacktriangleright }


2)



f
(
x
)

g
(
x
)


{\displaystyle f(x)\cdot g(x)}

funksiya




x

0




{\displaystyle x_{0}}

nuqtada hosilaga ega boʻlib,




(
f
(
x
)

g
(
x
)

)

x



=

f


(

x

0


)

g
(

x

0


)
±
f
(

x

0


)


g


(

x

0


)


{\displaystyle (f(x)\cdot g(x))'_{x}=f'(x_{0})\cdot g(x_{0})\pm f(x_{0})\cdot g'(x_{0})}


boʻladi.







{\displaystyle \blacktriangleleft }

F



(
x
)
=
f
(
x
)

g
(
x
)


{\displaystyle (x)=f(x)\cdot g(x)}

deb








F


(
x
)

F
(

x

0


)


x


x

0







{\displaystyle {F'(x)-F(x_{0}) \over x-x_{0}}}


nisbatini quyidagicha







F
(
x
)

F
(

x

0


)


x


x

0





=



f
(
x
)

f
(

x

0


)


x


x

0






g
(

x

0


)
+



g
(
x
)

g
(

x

0


)


x


x

0






f
(
x
)


{\displaystyle {F(x)-F(x_{0}) \over x-x_{0}}={f(x)-f(x_{0}) \over x-x_{0}}\cdot g(x_{0})+{g(x)-g(x_{0}) \over x-x_{0}}\cdot f(x)}


yozib olamiz. Soʻng



x


x

0




{\displaystyle x\longrightarrow x_{0}}

da limitga oʻtib topamiz.





lim

n


x

0







F
(
x
)

F
(

x

0


)


x


x

0





=
g
(

x

0


)


lim

n


x

0







f
(
x
)

f
(

x

0


)


x


x

0





+

lim

n


x

0







g
(
x
)

g
(

x

0


)


x


x

0






f
(
x
)
=


{\displaystyle \lim _{n\to x_{0}}{F(x)-F(x_{0}) \over x-x_{0}}=g(x_{0})\cdot \lim _{n\to x_{0}}{f(x)-f(x_{0}) \over x-x_{0}}+\lim _{n\to x_{0}}{g(x)-g(x_{0}) \over x-x_{0}}\cdot f(x)=}





=

f


(

x

0


)

g
(

x

0


)
+
f
(

x

0


)


g


(

x

0


)
.


{\displaystyle =f'(x_{0})\cdot g(x_{0})+f(x_{0})\cdot g'(x_{0}).}


Demak,





F


(

x

0


)
=
(
f
(
x
)

g
(
x
)

)

x
0



=

f


(

x

0


)

g
(

x

0


)
+
f
(

x

0


)


g


(

x

0


)



{\displaystyle F'(x_{0})=(f(x)\cdot g(x))'_{x0}=f'(x_{0})\cdot g(x_{0})+f(x_{0})\cdot g'(x_{0})\blacktriangleright }


3)






f
(
x
)


g
(
x
)





{\displaystyle {f(x) \over g(x)}}

funksiya



(
g
(

x

0


)

0
)


{\displaystyle (g(x_{0})\neq 0)}






x

0




{\displaystyle x_{0}}

nuqtada ho silaga ega boʻlib,






(





f
(
x
)


g
(
x
)






)



x
0



=




f


(

x

0


)

g
(

x

0


)

f
(

x

0


)


g


(

x

0


)



g

2


(

x

0


)





{\displaystyle {\biggl (}{f(x) \over g(x)}{\biggr )}'_{x0}={f'(x_{0})\cdot g(x_{0})-f(x_{0})\cdot g'(x_{0}) \over g^{2}(x_{0})}}


boʻladi.







{\displaystyle \blacktriangleleft }

Modomiki,



g
(

x

0


)

0


{\displaystyle g(x_{0})\neq 0}

ekan, unda




x

0




{\displaystyle x_{0}}

nuqtaning biror atrofidagi



x


{\displaystyle x}

larda



g
(
x
)

0


{\displaystyle g(x)\neq 0}

boʻladi.

SHuni etiborga olib topamiz:










f
(
x
)


g
(
x
)







f
(

x

0


)


g
(

x

0


)





x


x

0





=



f
(
x
)

g
(

x

0


)

f
(

x

0


)

g
(

x

0


)
+
f
(

x

0


)

g
(

x

0


)

f
(

x

0


)

g
(
x
)


g
(
x
)

g
(

x

0


)

(
x


x

0


)



=


{\displaystyle {{f(x) \over g(x)}-{f(x_{0}) \over g(x_{0})} \over x-x_{0}}={f(x)\cdot g(x_{0})-f(x_{0})\cdot g(x_{0})+f(x_{0})\cdot g(x_{0})-f(x_{0})\cdot g(x) \over g(x)\cdot g(x_{0})\cdot (x-x_{0})}=}





=


1

g
(
x
)

g
(

x

0


)




[




f
(
x
)

f
(

x

0


)


x


x

0






g
(

x

0


)

f
(

x

0


)




g
(
x
)

g
(

x

0


)


x


x

0






]

.


{\displaystyle ={1 \over g(x)\cdot g(x_{0})}\left[{\frac {f(x)-f(x_{0})}{x-x_{0}}}\centerdot g(x_{0})-f(x_{0})\cdot {\frac {g(x)-g(x_{0})}{x-x_{0}}}\right].}


Bu tenglikda



x


x

0




{\displaystyle x\longrightarrow x_{0}}

da limitga oʻtib, Ushbu






(



f
(
x
)


g
(
x
)



)


x
0



=




f


(

x

0


)

g
(

x

0


)

f
(

x

0


)


g


(

x

0


)



g

2


(

x

0


)





{\displaystyle \left({\frac {f(x)}{g(x)}}\right)'_{x0}={f'(x_{0})\cdot g(x_{0})-f(x_{0})\cdot g'(x_{0}) \over g^{2}(x_{0})}}


tenglikka kelamiz.






{\displaystyle \blacktriangleright }


1-natija. Agar



f
(
x
)


{\displaystyle f(x)}

funksiya




x

0




{\displaystyle x_{0}}

nuqtada




f


(

x

0


)


{\displaystyle f'(x_{0})}

hosilaga ega boʻlsa,



c

f
(
x
)


{\displaystyle c\cdot f(x)}

funksiya



(
c
=
c
o
n
s
t
)


{\displaystyle (c=const)}






x

0




{\displaystyle x_{0}}

nuqtada hosilaga ega boʻlib,




(
c

f
(
x
)

)

x
0



=
c


f


(

x

0


)


{\displaystyle (c\cdot f(x))'_{x0}=c\cdot f'(x_{0})}


boʻladi, yaʼni oʻzgarmas sonni hosila ishorasidan tashqariga chiqarish mumkin.

2-natija. Agar




f

1


(
x
)
,

f

2


(
x
)
,
.
.
.
,

f

n


(
x
)


{\displaystyle f_{1}(x),f_{2}(x),...,f_{n}(x)}

funksiyalar




x

0




{\displaystyle x_{0}}

nuqtada hosilalarga ega boʻlib,




c

1


,

c

2


,
.
.
.
,

c

n




{\displaystyle c_{1},c_{2},...,c_{n}}

oʻzgarmas sonlar boʻlsa

u holda




(

c

1



f

1


(
x
)
+

c

2



f

2


(
x
)
+
.
.
.
+

c

n



f

n


(
x

)

x
0



=

c

1



f

1



(

x

0


)
+

c

2



f

2



(

x

0


)
+
.
.
.
+

c

n



f

n



(

x

0


)


{\displaystyle (c_{1}f_{1}(x)+c_{2}f_{2}(x)+...+c_{n}f_{n}(x)'_{x0}=c_{1}f_{1}'(x_{0})+c_{2}f_{2}'(x_{0})+...+c_{n}f_{n}'(x_{0})}


boʻladi.

Murakkab funksiyaning hosilasi








2

0




{\displaystyle 2^{0}}

. Murakkab funksiyaning hosilasi.
Faraz qilaylik,



y
=
f
(
x
)


{\displaystyle y=f(x)}

funksiya



X

R


{\displaystyle X\subset R}

toʻplamda,



g
(
y
)


{\displaystyle g(y)}

funksiya




{
f
(
x
)

|

x

R
}



{\displaystyle {\{f(x)|x\in R\}}}

toʻplamda

berilgan boʻlib,




x

0



X


{\displaystyle x_{0}\in X}

nuqtada




f


(

x

0


)


{\displaystyle f'(x_{0})}

hosilaga,




y

0



{
f
(
x
)

|

x

X
}


{\displaystyle y_{0}\in \{f(x)|x\in X\}}

nuqtada



(

y

0


=
f
(

x

0


)
)


{\displaystyle (y_{0}=f(x_{0}))}






g


(

y

0


)


{\displaystyle g'(y_{0})}

hosilaga ega boʻlsin. U holda




g
(
f
(
x
)
)


{\displaystyle g(f(x))}

murakkab funksiya




x

o




{\displaystyle x_{o}}

hosilaga ega boʻlib,




(
g
(
f
(
x
)
)

)

x
0



=

g


(
f
(

x

0


)
)


f


(

x

0


)


{\displaystyle (g(f(x)))'_{x0}=g'(f(x_{0}))\cdot f'(x_{0})}


boʻladi.





g
(
y
)


{\displaystyle \blacktriangleleft g(y)}

funksiyaning




y

0




{\displaystyle y_{0}}

nuqtada




g


(

y

0


)


{\displaystyle g'(y_{0})}

hosilaga ega boʻlganligidan




g
(
y
)

g
(

y

0


)
=

g


(

y

0


)

(
y


y

0


)
+
α

(
y


y

0


)


{\displaystyle g(y)-g(y_{0})=g'(y_{0})\cdot (y-y_{0})+\alpha \cdot (y-y_{0})}


boʻlishi kelib chiqadi. Bunda




y
=
f
(
x
)
,

y

0


=
f
(

x

0


)


{\displaystyle y=f(x),y_{0}=f(x_{0})}

va



y


y

0




{\displaystyle y\longrightarrow y_{0}}

da



α

0


{\displaystyle \alpha \longrightarrow 0}

.

Keyingi tenglikning xar ikki tomonini



x


x

0




{\displaystyle x-x_{0}}

ga bo'lib topamiz;







g
(
f
(
x
)
)

g
(

x

0


)
)


x


x

0





=

g


(
f
(

x

0


)
)




f
(
x
)

f
(

x

0


)


x


x

0





+
a



f
(
x
)

f
(

x

0


)


x


x

0







{\displaystyle {g(f(x))-g(x_{0})) \over x-x_{0}}=g'(f(x_{0}))\cdot {f(x)-f(x_{0}) \over x-x_{0}}+a{f(x)-f(x_{0}) \over x-x_{0}}}


Bundan



x


x

0




{\displaystyle x-x_{0}}

da limitga o'tib,




(
g
(
f
(
x
)
)

)

x
0



=

g


(
f
(

x

0


)
)


f


(

x

0


)


{\displaystyle (g(f(x)))'_{x0}=g'(f(x_{0}))\cdot f'(x_{0})}


tenglikga kelamiz






{\displaystyle \blacktriangleright }


HOSILALAR JADVALI



Quyidagi sodda funksiyalarning hosilalarini ifodalovchi formulalarni keltiramiz




MANBALAR




{Худойберганов_Г_ва_бошқалар_Математик_анализдан_маърузалар_1 toʻplami} dan
olindi

uz.wikipedia.org

Uzpedia.uz