Giperbolik funksiyalarning integrallar jadvali




Izoh. Hamma integrallarda oʻzgarmas qoʻshiluvchi tushirib qoldirilgan.





sh

c
x

d
x
=


1
c


ch

c
x


{\displaystyle \int \operatorname {sh} cx\,dx={\frac {1}{c}}\operatorname {ch} cx}






ch

c
x

d
x
=


1
c


sh

c
x


{\displaystyle \int \operatorname {ch} cx\,dx={\frac {1}{c}}\operatorname {sh} cx}







sh

2



c
x

d
x
=


1

4
c



sh

2
c
x



x
2




{\displaystyle \int \operatorname {sh} ^{2}cx\,dx={\frac {1}{4c}}\operatorname {sh} 2cx-{\frac {x}{2}}}







ch

2



c
x

d
x
=


1

4
c



sh

2
c
x
+


x
2




{\displaystyle \int \operatorname {ch} ^{2}cx\,dx={\frac {1}{4c}}\operatorname {sh} 2cx+{\frac {x}{2}}}







sh

n



c
x

d
x
=


1

c
n




sh

n

1



c
x
ch

c
x




n

1

n




sh

n

2



c
x

d
x






n
>
0


)




{\displaystyle \int \operatorname {sh} ^{n}cx\,dx={\frac {1}{cn}}\operatorname {sh} ^{n-1}cx\operatorname {ch} cx-{\frac {n-1}{n}}\int \operatorname {sh} ^{n-2}cx\,dx\qquad {\mbox{( }}n>0{\mbox{)}}}


также:





sh

n



c
x

d
x
=


1

c
(
n
+
1
)




sh

n
+
1



c
x
ch

c
x




n
+
2


n
+
1





sh

n
+
2



c
x

d
x






n
<
0





n


1


)




{\displaystyle \int \operatorname {sh} ^{n}cx\,dx={\frac {1}{c(n+1)}}\operatorname {sh} ^{n+1}cx\operatorname {ch} cx-{\frac {n+2}{n+1}}\int \operatorname {sh} ^{n+2}cx\,dx\qquad {\mbox{( }}n<0{\mbox{, }}n\neq -1{\mbox{)}}}







ch

n



c
x

d
x
=


1

c
n



sh

c
x

ch

n

1



c
x
+



n

1

n




ch

n

2



c
x

d
x






n
>
0


)




{\displaystyle \int \operatorname {ch} ^{n}cx\,dx={\frac {1}{cn}}\operatorname {sh} cx\operatorname {ch} ^{n-1}cx+{\frac {n-1}{n}}\int \operatorname {ch} ^{n-2}cx\,dx\qquad {\mbox{( }}n>0{\mbox{)}}}


также:





ch

n



c
x

d
x
=



1

c
(
n
+
1
)



sh

c
x

ch

n
+
1



c
x




n
+
2


n
+
1





ch

n
+
2



c
x

d
x



(


n
<
0





n


1


)




{\displaystyle \int \operatorname {ch} ^{n}cx\,dx=-{\frac {1}{c(n+1)}}\operatorname {sh} cx\operatorname {ch} ^{n+1}cx-{\frac {n+2}{n+1}}\int \operatorname {ch} ^{n+2}cx\,dx\qquad {\mbox{(}}n<0{\mbox{, }}n\neq -1{\mbox{)}}}









d
x


sh

c
x



=


1
c


ln


|

th




c
x

2



|

=


1
c


ln


|



ch

c
x

1


sh

c
x



|

=


1
c


ln


|



sh

c
x


ch

c
x
+
1



|

=


1
c


ln


|



ch

c
x

1


ch

c
x
+
1



|



{\displaystyle \int {\frac {dx}{\operatorname {sh} cx}}={\frac {1}{c}}\ln \left|\operatorname {th} {\frac {cx}{2}}\right|={\frac {1}{c}}\ln \left|{\frac {\operatorname {ch} cx-1}{\operatorname {sh} cx}}\right|={\frac {1}{c}}\ln \left|{\frac {\operatorname {sh} cx}{\operatorname {ch} cx+1}}\right|={\frac {1}{c}}\ln \left|{\frac {\operatorname {ch} cx-1}{\operatorname {ch} cx+1}}\right|}









d
x



sh

2



c
x



=



1
c


cth

c
x


{\displaystyle \int {\frac {dx}{\operatorname {sh} ^{2}cx}}=-{\frac {1}{c}}\operatorname {cth} cx}









d
x


ch

c
x



=


2
c


arctg


e

c
x




{\displaystyle \int {\frac {dx}{\operatorname {ch} cx}}={\frac {2}{c}}\operatorname {arctg} e^{cx}}









d
x



ch

2



c
x



=


1
c


th

c
x


{\displaystyle \int {\frac {dx}{\operatorname {ch} ^{2}cx}}={\frac {1}{c}}\operatorname {th} cx}









d
x



sh

n



c
x



=



ch

c
x


c
(
n

1
)

sh

n

1



c
x







n

2


n

1







d
x



sh

n

2



c
x









n

1


)




{\displaystyle \int {\frac {dx}{\operatorname {sh} ^{n}cx}}={\frac {\operatorname {ch} cx}{c(n-1)\operatorname {sh} ^{n-1}cx}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\operatorname {sh} ^{n-2}cx}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}









d
x



ch

n



c
x



=



sh

c
x


c
(
n

1
)

ch

n

1



c
x



+



n

2


n

1







d
x



ch

n

2



c
x









n

1


)




{\displaystyle \int {\frac {dx}{\operatorname {ch} ^{n}cx}}={\frac {\operatorname {sh} cx}{c(n-1)\operatorname {ch} ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\operatorname {ch} ^{n-2}cx}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}










ch

n



c
x



sh

m



c
x



d
x
=




ch

n

1



c
x


c
(
n

m
)

sh

m

1



c
x



+



n

1


n

m








ch

n

2



c
x



sh

m



c
x



d
x






m

n


)




{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}}dx={\frac {\operatorname {ch} ^{n-1}cx}{c(n-m)\operatorname {sh} ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\operatorname {ch} ^{n-2}cx}{\operatorname {sh} ^{m}cx}}dx\qquad {\mbox{( }}m\neq n{\mbox{)}}}


также:








ch

n



c
x



sh

m



c
x



d
x
=





ch

n
+
1



c
x


c
(
m

1
)

sh

m

1



c
x



+



n

m
+
2


m

1








ch

n



c
x



sh

m

2



c
x



d
x






m

1


)




{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}}dx=-{\frac {\operatorname {ch} ^{n+1}cx}{c(m-1)\operatorname {sh} ^{m-1}cx}}+{\frac {n-m+2}{m-1}}\int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m-2}cx}}dx\qquad {\mbox{( }}m\neq 1{\mbox{)}}}


также:








ch

n



c
x



sh

m



c
x



d
x
=





ch

n

1



c
x


c
(
m

1
)

sh

m

1



c
x



+



n

1


m

1








ch

n

2



c
x



sh

m

2



c
x



d
x






m

1


)




{\displaystyle \int {\frac {\operatorname {ch} ^{n}cx}{\operatorname {sh} ^{m}cx}}dx=-{\frac {\operatorname {ch} ^{n-1}cx}{c(m-1)\operatorname {sh} ^{m-1}cx}}+{\frac {n-1}{m-1}}\int {\frac {\operatorname {ch} ^{n-2}cx}{\operatorname {sh} ^{m-2}cx}}dx\qquad {\mbox{( }}m\neq 1{\mbox{)}}}










sh

m



c
x



ch

n



c
x



d
x
=




sh

m

1



c
x


c
(
m

n
)

ch

n

1



c
x



+



m

1


m

n








sh

m

2



c
x



ch

n



c
x



d
x






m

n


)




{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}}dx={\frac {\operatorname {sh} ^{m-1}cx}{c(m-n)\operatorname {ch} ^{n-1}cx}}+{\frac {m-1}{m-n}}\int {\frac {\operatorname {sh} ^{m-2}cx}{\operatorname {ch} ^{n}cx}}dx\qquad {\mbox{( }}m\neq n{\mbox{)}}}


также:








sh

m



c
x



ch

n



c
x



d
x
=




sh

m
+
1



c
x


c
(
n

1
)

ch

n

1



c
x



+



m

n
+
2


n

1








sh

m



c
x



ch

n

2



c
x



d
x






n

1


)




{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}}dx={\frac {\operatorname {sh} ^{m+1}cx}{c(n-1)\operatorname {ch} ^{n-1}cx}}+{\frac {m-n+2}{n-1}}\int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n-2}cx}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}


также:








sh

m



c
x



ch

n



c
x



d
x
=





sh

m

1



c
x


c
(
n

1
)

ch

n

1



c
x



+



m

1


n

1








sh

m

2



c
x



ch

n

2



c
x



d
x






n

1


)




{\displaystyle \int {\frac {\operatorname {sh} ^{m}cx}{\operatorname {ch} ^{n}cx}}dx=-{\frac {\operatorname {sh} ^{m-1}cx}{c(n-1)\operatorname {ch} ^{n-1}cx}}+{\frac {m-1}{n-1}}\int {\frac {\operatorname {sh} ^{m-2}cx}{\operatorname {ch} ^{n-2}cx}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}






x
sh

c
x

d
x
=


1
c


x
ch

c
x



1

c

2




sh

c
x


{\displaystyle \int x\operatorname {sh} cx\,dx={\frac {1}{c}}x\operatorname {ch} cx-{\frac {1}{c^{2}}}\operatorname {sh} cx}






x
ch

c
x

d
x
=


1
c


x
sh

c
x



1

c

2




ch

c
x


{\displaystyle \int x\operatorname {ch} cx\,dx={\frac {1}{c}}x\operatorname {sh} cx-{\frac {1}{c^{2}}}\operatorname {ch} cx}






th

c
x

d
x
=


1
c


ln


|

ch

c
x

|



{\displaystyle \int \operatorname {th} cx\,dx={\frac {1}{c}}\ln |\operatorname {ch} cx|}






cth

c
x

d
x
=


1
c


ln


|

sh

c
x

|



{\displaystyle \int \operatorname {cth} cx\,dx={\frac {1}{c}}\ln |\operatorname {sh} cx|}







th

2



c
x

d
x
=
x



1
c


th

c
x


{\displaystyle \int \operatorname {th} ^{2}cx\,dx=x-{\frac {1}{c}}\operatorname {th} cx}







cth

2



c
x

d
x
=
x



1
c


cth

c
x


{\displaystyle \int \operatorname {cth} ^{2}cx\,dx=x-{\frac {1}{c}}\operatorname {cth} cx}







th

n



c
x

d
x
=



1

c
(
n

1
)




th

n

1



c
x
+


th

n

2



c
x

d
x






n

1


 )




{\displaystyle \int \operatorname {th} ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\operatorname {th} ^{n-1}cx+\int \operatorname {th} ^{n-2}cx\,dx\qquad {\mbox{( }}n\neq 1{\mbox{ )}}}







cth

n



c
x

d
x
=



1

c
(
n

1
)




cth

n

1



c
x
+


cth

n

2



c
x

d
x






n

1


)




{\displaystyle \int \operatorname {cth} ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\operatorname {cth} ^{n-1}cx+\int \operatorname {cth} ^{n-2}cx\,dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}






sh

b
x
sh

c
x

d
x
=


1


b

2




c

2





(
b
sh

c
x
ch

b
x

c
ch

c
x
sh

b
x
)







b

2




c

2




)




{\displaystyle \int \operatorname {sh} bx\operatorname {sh} cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\operatorname {sh} cx\operatorname {ch} bx-c\operatorname {ch} cx\operatorname {sh} bx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}






ch

b
x
ch

c
x

d
x
=


1


b

2




c

2





(
b
sh

b
x
ch

c
x

c
sh

c
x
ch

b
x
)







b

2




c

2




)




{\displaystyle \int \operatorname {ch} bx\operatorname {ch} cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\operatorname {sh} bx\operatorname {ch} cx-c\operatorname {sh} cx\operatorname {ch} bx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}






ch

b
x
sh

c
x

d
x
=


1


b

2




c

2





(
b
sh

b
x
sh

c
x

c
ch

b
x
ch

c
x
)







b

2




c

2




)




{\displaystyle \int \operatorname {ch} bx\operatorname {sh} cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\operatorname {sh} bx\operatorname {sh} cx-c\operatorname {ch} bx\operatorname {ch} cx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}






sh

(
a
x
+
b
)
sin

(
c
x
+
d
)

d
x
=


a


a

2


+

c

2





ch

(
a
x
+
b
)
sin

(
c
x
+
d
)



c


a

2


+

c

2





sh

(
a
x
+
b
)
cos

(
c
x
+
d
)


{\displaystyle \int \operatorname {sh} (ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\cos(cx+d)}






sh

(
a
x
+
b
)
cos

(
c
x
+
d
)

d
x
=


a


a

2


+

c

2





ch

(
a
x
+
b
)
cos

(
c
x
+
d
)
+


c


a

2


+

c

2





sh

(
a
x
+
b
)
sin

(
c
x
+
d
)


{\displaystyle \int \operatorname {sh} (ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\sin(cx+d)}






ch

(
a
x
+
b
)
sin

(
c
x
+
d
)

d
x
=


a


a

2


+

c

2





sh

(
a
x
+
b
)
sin

(
c
x
+
d
)



c


a

2


+

c

2





ch

(
a
x
+
b
)
cos

(
c
x
+
d
)


{\displaystyle \int \operatorname {ch} (ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\cos(cx+d)}






ch

(
a
x
+
b
)
cos

(
c
x
+
d
)

d
x
=


a


a

2


+

c

2





sh

(
a
x
+
b
)
cos

(
c
x
+
d
)
+


c


a

2


+

c

2





ch

(
a
x
+
b
)
sin

(
c
x
+
d
)


{\displaystyle \int \operatorname {ch} (ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\operatorname {sh} (ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\operatorname {ch} (ax+b)\sin(cx+d)}


uz.wikipedia.org

Uzpedia.uz