Gamov nazariyasi




Gamov nazariyasi - radioaktiv yadrolarning



α


{\displaystyle \alpha }

-parchalanishini kvant tasavvurlar asosida tushuntirib beruvchi nazariya.




α


{\displaystyle \alpha }

-parchalanish deganda, ogʻir yadrolarning oʻzidan geliy atomining yadrosini chiqarib, boshqa yadroga aylanishi tushuniladi.



α


{\displaystyle \alpha }

-parchalanish uchun energetik shart quyidagi koʻrinishga ega:




M
(
A
,
 
Z
)
>
M
(
A

4
,
 
Z

2
)
+

M

α




{\displaystyle M(A,\ Z)>M(A-4,\ Z-2)+M_{\alpha }}


Parchalanishda hosil boʻlgan energiya quyidagi ifoda orqali topiladi:





Q

α


=
(
M
(
A
,
 
Z
)

M
(
A

4
,
 
Z

2
)


M

α


)

c

2


,


{\displaystyle Q_{\alpha }=(M(A,\ Z)-M(A-4,\ Z-2)-M_{\alpha })c^{2},}


Energiya va impulsning saqlanish qonunlaridan foydalanib,



α


{\displaystyle \alpha }

-zarra yadroni tark etayotganida ega boʻladigan kinetik energiyasini aniqlash mumkin:





T

α


=




M
(
A

4
,
 
Z

2
)



m

α


+
M
(
A

4
,
 
Z

2
)





Q

α




{\displaystyle T_{\alpha }={\dfrac {M(A-4,\ Z-2)}{m_{\alpha }+M(A-4,\ Z-2)}}Q_{\alpha }}





α


{\displaystyle \alpha }

-parchalanishda hosil boʻlgan



α


{\displaystyle \alpha }

-zarra kinetik energiyasi 2-8 MeV atrofida boʻladi,



α


{\displaystyle \alpha }

-zarraning yadroga bogʻlanish energiyasi esa 28.3 MeV ga teng. U holda



α


{\displaystyle \alpha }

-zarra yadroni qanday tark etadi, degan tabiiy savol tugʻiladi. Bunga G. A. Gamov kvant tasavvurlar asosida ishlab chiqqan nazariyasi orqali javob topish mumkin.

Gamov nazariyasi quyidagi prinsiplarga asoslanadi:

Vaqt birligidagi parchalanish ehtimolligi



λ


{\displaystyle \lambda }

ni quyidagi ifoda orqali aniqlash mumkin:




λ
=
n
T


{\displaystyle \lambda =nT}





n


{\displaystyle n}

 —



α


{\displaystyle \alpha }

-zarraning yadro ichida potensial toʻsiq bilan toʻqnashishlari soni,



T


{\displaystyle T}

 —



α


{\displaystyle \alpha }

-zarraning toʻsiq orqali oʻtish ehtimolligi.

Aytaylik, ixtiyoriy vaqt momentida yadro ichida faqat bitta



α


{\displaystyle \alpha }

-zarra mavjud boʻlsin va u yadro diametri boʻylab oldinga va orqaga harakatlanayotgan boʻlsin.




ν
=



v

2

R

0








{\displaystyle \nu ={\dfrac {v}{2R_{0}}}}





v


{\displaystyle v}

 —



α


{\displaystyle \alpha }

-zarraning yadroni tark etayotgandagi tezligi.

Kengligi



L


{\displaystyle L}

boʻlgan toʻsiqdan zarraning oʻtish ehtimolligi:




T
=

e


2

k

2


L


,
 
 
 
 
 
 
 
 
 
(
1
)


{\displaystyle T=e^{-2k_{2}L},\ \ \ \ \ \ \ \ \ (1)}






k

2


=




2
m
(
U

E
)







{\displaystyle k_{2}={\dfrac {\sqrt {2m(U-E)}}{\hbar }}}


(1) tenglama toʻgʻri burchakli potensial toʻsiqni ifodalaydi,



α


{\displaystyle \alpha }

-zarra yadro ichida toʻsiq bilan koʻp marta toʻqnashadi.




ln

T
=

2

k

2


L
,
 
 
 
 
 
 
 
 
(
2
)


{\displaystyle \ln T=-2k_{2}L,\ \ \ \ \ \ \ \ (2)}





ln

T
=

2



0


L



k

2


(
r
)

d
r
=

2




R

0




R



k

2


(
r
)

d
r
,
 
 
 
 
 
 
 
 
 
(
3
)


{\displaystyle \ln T=-2\int \limits _{0}^{L}k_{2}(r)\,dr=-2\int \limits _{R_{0}}^{R}k_{2}(r)\,dr,\ \ \ \ \ \ \ \ \ (3)}






R

0




{\displaystyle R_{0}}

 — yadro radiusi,




R


{\displaystyle R}

 —



U
=
E


{\displaystyle U=E}

boʻlganda, yadrogacha masofa




α


{\displaystyle \alpha }

-zarraning



r


{\displaystyle r}

masofadagi elektr potensial energiyasi:




U
(
r
)
=




2
Z

e

2




4
π

ε

0


r






{\displaystyle U(r)={\dfrac {2Ze^{2}}{4\pi \varepsilon _{0}r}}}


U holda,





k

2


=




2
m
(
U

E
)





=


(




2
m




2





)


1

/

2





(





2
Z

e

2




4
π

ε

0


r





E

)


1

/

2




{\displaystyle k_{2}={\dfrac {\sqrt {2m(U-E)}}{\hbar }}=\left({\dfrac {2m}{\hbar ^{2}}}\right)^{1/2}\cdot \left({\dfrac {2Ze^{2}}{4\pi \varepsilon _{0}r}}-E\right)^{1/2}}





r
=
R


{\displaystyle r=R}

boʻlganda



U
=
E


{\displaystyle U=E}

boʻlgani uchun,




E
=




2
Z

e

2




4
π

ε

0


R






{\displaystyle E={\dfrac {2Ze^{2}}{4\pi \varepsilon _{0}R}}}






k

2




{\displaystyle k_{2}}

ni quyidagicha yozish mumkin:





k

2


=


(




2
m




2





)


1

/

2





(




R
r




1

)


1

/

2




{\displaystyle k_{2}=\left({\dfrac {2m}{\hbar ^{2}}}\right)^{1/2}\cdot \left({\dfrac {R}{r}}-1\right)^{1/2}}





ln

T
=

2




R

0




R



k

2


(
r
)

d
r
=

2


(




2
m
E




2





)


1

/

2





(




R
r




1

)


1

/

2



d
r
 
 
 
 
 
 
 
 
(
4
)


{\displaystyle \ln T=-2\int \limits _{R_{0}}^{R}k_{2}(r)\,dr=-2\left({\dfrac {2mE}{\hbar ^{2}}}\right)^{1/2}\cdot \left({\dfrac {R}{r}}-1\right)^{1/2}\,dr\ \ \ \ \ \ \ \ (4)}






[

r
=
R

cos

2



θ
,
 
 
 
d
r
=

2
R
sin

θ
cos

θ
d
θ

]



{\displaystyle \left[r=R\cos ^{2}\theta ,\ \ \ dr=-2R\sin \theta \cos \theta d\theta \right]}






[




(




R
r




1

)


1

/

2



d
r
=

2
R


sin

2



θ

d
θ

]



{\displaystyle \left[\int \left({\dfrac {R}{r}}-1\right)^{1/2}\,dr=-2R\int \sin ^{2}\theta \,d\theta \right]}





ln

T
=

2


(




2
m
E




2





)


1

/

2


R

[


cos


1





(




R

0


R



)


1

/

2





(




R

0


R



)


1

/

2




(

1





R

0


R




)


1

/

2



]



{\displaystyle \ln T=-2\left({\dfrac {2mE}{\hbar ^{2}}}\right)^{1/2}R\left[\cos ^{-1}\left({\dfrac {R_{0}}{R}}\right)^{1/2}-\left({\dfrac {R_{0}}{R}}\right)^{1/2}\left(1-{\dfrac {R_{0}}{R}}\right)^{1/2}\right]}


Potensial toʻsiq yetarlicha keng boʻlgani uchun,



R


R

0




{\displaystyle R\gg R_{0}}

hamda




cos


(




π
2




θ

)

=
sin

θ


{\displaystyle \cos \left({\dfrac {\pi }{2}}-\theta \right)=\sin \theta }





sin



(




R

0


R



)


1

/

2





(




R

0


R



)


1

/

2




{\displaystyle \sin \left({\dfrac {R_{0}}{R}}\right)^{1/2}\approx \left({\dfrac {R_{0}}{R}}\right)^{1/2}}






cos


1





(




R

0


R



)


1

/

2






π
2






(




R

0


R



)


1

/

2




{\displaystyle \cos ^{-1}\left({\dfrac {R_{0}}{R}}\right)^{1/2}\approx {\dfrac {\pi }{2}}-\left({\dfrac {R_{0}}{R}}\right)^{1/2}}





1



(




R

0


R



)


1

/

2



1


{\displaystyle 1-\left({\dfrac {R_{0}}{R}}\right)^{1/2}\approx 1}





ln

T
=

2


(




2
m
E




2





)


1

/

2


r

[




π
2




2


(




R

0


R



)


1

/

2



]



{\displaystyle \ln T=-2\left({\dfrac {2mE}{\hbar ^{2}}}\right)^{1/2}r\left[{\dfrac {\pi }{2}}-2\left({\dfrac {R_{0}}{R}}\right)^{1/2}\right]}






[

R
=




2
Z

e

2




4
π

ε

0


E





]



{\displaystyle \left[R={\dfrac {2Ze^{2}}{4\pi \varepsilon _{0}E}}\right]}


Bundan kelib chiqadiki,




ln

T
=




4
e







(



m

π

ε

0






)


1

/

2



Z

1

/

2



R

0


1

/

2







e

2





ε

0








(



m
2



)


1

/

2


Z

E


1

/

2




{\displaystyle \ln T={\dfrac {4e}{\hbar }}\left({\dfrac {m}{\pi \varepsilon _{0}}}\right)^{1/2}Z^{1/2}R_{0}^{1/2}-{\dfrac {e^{2}}{\hbar \varepsilon _{0}}}\left({\dfrac {m}{2}}\right)^{1/2}ZE^{-1/2}}


Tenglamadagi doimiylarning qiymatlarini oʻrniga qoʻyib hisoblasak:




ln

T
=
2
,
97

Z

1

/

2



R

0


1

/

2



3
,
95
Z

E


1

/

2




{\displaystyle \ln T=2,97Z^{1/2}R_{0}^{1/2}-3,95ZE^{-1/2}}





E


{\displaystyle E}

 — energiya,




R

0




{\displaystyle R_{0}}

 — yadro radiusi,



Z


{\displaystyle Z}

 — hosilaviy yadroning tartib raqami.





log

10



A
=

(


log

10



e

)

(
ln

A
)
=
0
,
4343
ln

A


{\displaystyle \log _{10}A=\left(\log _{10}e\right)(\ln A)=0,4343\ln A}






log

10



T
=
1
,
29

Z

1

/

2



R

0


1

/

2



1
,
72
Z

E


1

/

2




{\displaystyle \log _{10}T=1,29Z^{1/2}R_{0}^{1/2}-1,72ZE^{-1/2}}


Taʼrifga binoan, parchalanish doimiysi




λ
=
ν
T
=



v

2

R

0






T


{\displaystyle \lambda =\nu T={\dfrac {v}{2R_{0}}}T}


Tenglamaning ikkala tomonidan




log

10




{\displaystyle \log _{10}}

olamiz va



T


{\displaystyle T}

bilan almashtiramiz:





log

10



λ
=

log

10




(



v

2

R

0






)

+
1
,
92

Z

1

/

2



R

0


1

/

2



1
,
72
Z

E


1

/

2




{\displaystyle \log _{10}\lambda =\log _{10}\left({\dfrac {v}{2R_{0}}}\right)+1,92Z^{1/2}R_{0}^{1/2}-1,72ZE^{-1/2}}


Hosil boʻlgan bu formulaga Geyger-Nettol qonuni deyiladi. Ushbu qonun



α


{\displaystyle \alpha }

-parchalanish energiyasi va radioaktiv yadrolarning yarim yemirilish davrlari orasidagi bogʻliqlikni ifodalaydi va katta amaliy ahamiyatga ega.

Shuningdek qarang



Beta-yemirilish

Gamma nurlanish

Radioaktivlik qonuni

Manbalar




uz.wikipedia.org

Uzpedia.uz