Elliptik silindrning elektr maydoni




Elliptik silindrning elektr maydoni

Cheksiz uzun silindr sirti boʻylab zaryadlar bir jinsli taqsimlangan boʻlsin. Zaryadlarning sirt zichligi



ρ


{\displaystyle \rho }

. Shu bir jinsli cheksiz uzun silindr sirtidagi elektr maydonini hisoblaymiz.

Ellipsning x va z oʻqlari boʻyicha yarim oʻqlari a va b ga teng deylik. U holda, zaryadlar hosil qiladigan potensial quyidagi koʻrinishda boʻladi:





φ
(
x
,
z
)
=
ρ




a


a


d

x






b


1




x



2




a

2








b


1




x



2




a

2








d

z


ln



1

(
x


x



)

2


+
(
z


z



)

2







{\displaystyle \varphi (x,z)=\rho \int \limits _{-a}^{a}dx'\int \limits _{-b{\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}}^{b{\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}}dz'\ln {\frac {1}{(x-x')^{2}+(z-z')^{2}}}}


Endi esa, zaryadlar silindrdan tashqarida hosil qilgan maydonning z oʻqi boʻyicha tashkil etuvchisini koʻrib chiqamiz:







x

2



a

2




+



z

2



b

2




=
1
+
δ
 
 
 
 
 
(
0
<
δ

1
)


{\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {z^{2}}{b^{2}}}=1+\delta \ \ \ \ \ (0<\delta \ll 1)}


Uni quyidagicha ifodalashimiz mumkin:





E

1


(
x
,
z
)







φ



z




=
ρ




a


a


d

x






b


1




x



2




a

2








b


1




x



2




a

2








d

z









z






ln



1

(
x


x



)

2


+
(
z


z



)

2





=
ρ




a


a


d
x

ln




(
x


x



)

2


+


(

z
+
b


1




x



2




a

2







)


2




(
x


x



)

2


+


(

z

b


1




x



2




a

2







)


2







{\displaystyle E_{1}(x,z)\equiv -{\dfrac {\partial \varphi }{\partial z}}=\rho \int \limits _{-a}^{a}dx'\int \limits _{-b{\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}}^{b{\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}}dz'{\dfrac {\partial }{\partial z'}}\ln {\frac {1}{(x-x')^{2}+(z-z')^{2}}}=\rho \int \limits _{-a}^{a}dx\prime \ln {\frac {(x-x')^{2}+\left(z+b{\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}\right)^{2}}{(x-x')^{2}+\left(z-b{\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}\right)^{2}}}}


Bu integralni hisoblash uchun yangi oʻzgaruvchilar kiritamiz:




x
=
a
cos

ψ
,

x


=
a
cos


ψ


,
b

/

a
=
ε
,
δ
+

sin

2



ψ
=

sin

2



φ


{\displaystyle x=a\cos \psi ,x'=a\cos \psi ',b/a=\varepsilon ,\delta +\sin ^{2}\psi =\sin ^{2}\varphi }


U holda





1




x



2




a

2






=
sin


ψ


,
 
z
=
b
sin

φ


{\displaystyle {\sqrt {1-{\frac {x'^{2}}{a^{2}}}}}=\sin \psi ',\ z=b\sin \varphi }

boʻladi hamda





E

z


=
a
ρ



0


π


sin


ψ


d

ψ


ln




(
cos


ψ



cos

ψ

)

2


+

ε

2


(
sin


ψ


+
sin

φ

)

2




(
cos


ψ



cos

ψ

)

2


+

ε

2


(
sin


ψ



sin

φ

)

2





=
a
ρ



0


π


sin


ψ


d

ψ


ln





sin

2







ψ


+
ψ

2



sin

2







ψ



ψ

2


+

ε

2



sin

2







ψ


+
φ

2



cos

2







ψ



φ

2





sin

2







ψ


+
ψ

2



sin

2







ψ



ψ

2


+

ε

2



sin

2







ψ


+
φ

2



sin

2







ψ



φ

2







{\displaystyle E_{z}=a\rho \int \limits _{0}^{\pi }\sin \psi 'd\psi '\ln {\frac {(\cos \psi '-\cos \psi )^{2}+\varepsilon ^{2}(\sin \psi '+\sin \varphi )^{2}}{(\cos \psi '-\cos \psi )^{2}+\varepsilon ^{2}(\sin \psi '-\sin \varphi )^{2}}}=a\rho \int \limits _{0}^{\pi }\sin \psi 'd\psi '\ln {\frac {\sin ^{2}{\frac {\psi '+\psi }{2}}\sin ^{2}{\frac {\psi '-\psi }{2}}+\varepsilon ^{2}\sin ^{2}{\frac {\psi '+\varphi }{2}}\cos ^{2}{\frac {\psi '-\varphi }{2}}}{\sin ^{2}{\frac {\psi '+\psi }{2}}\sin ^{2}{\frac {\psi '-\psi }{2}}+\varepsilon ^{2}\sin ^{2}{\frac {\psi '+\varphi }{2}}\sin ^{2}{\frac {\psi '-\varphi }{2}}}}}






δ

0


{\displaystyle \delta \rightarrow 0}

boʻlganda,



φ

ψ


{\displaystyle \varphi \rightarrow \psi }

. Bu oʻtishning uzluksizligidan foydalanib integral ostidagi ifodani quyidagicha yozib olishimiz mumkin:






E

z


=
a
ρ



0


π


sin


ψ


d

ψ


ln





sin

2






ψ
+

ψ



2



[


sin

2






ψ


ψ



2


+

ε

2



cos

2






ψ


ψ



2



]




sin

2






ψ


ψ



2



[


sin

2






ψ
+

ψ



2


+

ε

2



cos

2






ψ
+

ψ



2



]




=
a
ρ



0


π


sin

φ
d
φ

[




1

cos

(
φ
+
ψ
)


1

cos

(
φ

ψ
)






1
+




ε

2



1



ε

2


+
1



cos

(
φ

ψ
)


1
+




ε

2



1



ε

2


+
1



cos

(
φ
+
ψ
)




]

=
a
ρ



π
+
φ


π

φ


sin

(
φ
+
ψ
)
d
φ
ln




1
+




ε

2



1



ε

2


+
1



cos

φ


1

cos

ψ



+
a
ρ



ψ


π
+
ψ


sin

(
φ

ψ
)
d
φ
ln




1

cos

ψ


1
+




ε

2



1



ε

2


+
1



cos

φ





{\displaystyle E_{z}=a\rho \int \limits _{0}^{\pi }\sin \psi 'd\psi '\ln {\frac {\sin ^{2}{\frac {\psi +\psi '}{2}}\left[\sin ^{2}{\frac {\psi -\psi '}{2}}+\varepsilon ^{2}\cos ^{2}{\frac {\psi -\psi '}{2}}\right]}{\sin ^{2}{\frac {\psi -\psi '}{2}}\left[\sin ^{2}{\frac {\psi +\psi '}{2}}+\varepsilon ^{2}\cos ^{2}{\frac {\psi +\psi '}{2}}\right]}}=a\rho \int \limits _{0}^{\pi }\sin \varphi d\varphi \left[{\frac {1-\cos(\varphi +\psi )}{1-\cos(\varphi -\psi )}}{\frac {1+{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\cos(\varphi -\psi )}{1+{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\cos(\varphi +\psi )}}\right]=a\rho \int \limits _{\pi +\varphi }^{\pi -\varphi }\sin(\varphi +\psi )d\varphi \ln {\frac {1+{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\cos \varphi }{1-\cos \psi }}+a\rho \int \limits _{\psi }^{\pi +\psi }\sin(\varphi -\psi )d\varphi \ln {\frac {1-\cos \psi }{1+{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\cos \varphi }}}


Birinchi integralda integrallash oʻzgaruvchisini almashtiramiz:



φ

=
π

φ


{\displaystyle \varphi \prime =\pi -\varphi }

.

Natijada





E

z


=
a
ρ



ψ


π
+
ψ


sin

(
φ

ψ
)
d
φ

[

ln




1
+




ε

2



1



ε

2


+
1



cos

φ


1





ε

2



1



ε

2


+
1



cos

φ



+
ln




1

cos

φ


1
+
cos

φ




]

=
a
ρ

[

Φ

(

ψ
,




ε

2



1



ε

2


+
1




)

+
Φ
(
ψ
,
1
)

]



{\displaystyle E_{z}=a\rho \int \limits _{\psi }^{\pi +\psi }\sin(\varphi -\psi )d\varphi \left[\ln {\frac {1+{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\cos \varphi }{1-{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\cos \varphi }}+\ln {\frac {1-\cos \varphi }{1+\cos \varphi }}\right]=a\rho \left[\Phi \left(\psi ,{\frac {\varepsilon ^{2}-1}{\varepsilon ^{2}+1}}\right)+\Phi (\psi ,1)\right]}


bu yerda




Φ
(
ψ
,
α
)
=



ψ


π
+
ψ


sin

(
φ

ψ
)
d
φ
ln




1

α
cos

φ


1
+
α
cos

φ





{\displaystyle \Phi (\psi ,\alpha )=\int \limits _{\psi }^{\pi +\psi }\sin(\varphi -\psi )d\varphi \ln {\frac {1-\alpha \cos \varphi }{1+\alpha \cos \varphi }}}


Yuqoridagi integralni boʻlaklab integrallash mumkin:




Φ
(
ψ
,
α
)
=

cos

(
φ

ψ
)
ln




1

α
cos

φ


1
+
α
cos

φ






|



ψ


π
+
ψ


+
2
π



ψ


π
+
ψ





cos

(
φ
+
ψ
)
sin

φ


1


α

2



cos

2



φ



+
2
α
sin

ψ



ψ


π
+
ψ






sin

2



φ
d
φ


1


α

2



cos

2



φ





{\displaystyle \Phi (\psi ,\alpha )=-\cos(\varphi -\psi )\ln {\frac {1-\alpha \cos \varphi }{1+\alpha \cos \varphi }}{\Big |}_{\psi }^{\pi +\psi }+2\pi \int \limits _{\psi }^{\pi +\psi }{\frac {\cos(\varphi +\psi )\sin \varphi }{1-\alpha ^{2}\cos ^{2}\varphi }}+2\alpha \sin \psi \int \limits _{\psi }^{\pi +\psi }{\frac {\sin ^{2}\varphi d\varphi }{1-\alpha ^{2}\cos ^{2}\varphi }}}


Koʻrinib turibdiki, yuqorida berilgan integraldagi birinchi had nolga teng. Ikkinchi hadda integral ostidagi funksiyaning



(
0
,
ψ
)


{\displaystyle (0,\psi )}

va



(
π
,
π
+
ψ
)


{\displaystyle (\pi ,\pi +\psi )}


intervallardagi qiymati bir-biriga mos keladi. Natijada,



Φ
(
ψ
,
α
)


{\displaystyle \Phi (\psi ,\alpha )}

ni quyidagi koʻrinishda yozishimiz mumkin:





Φ
(
ψ
,
α
)
=
2
α
sin

ψ



0


π






sin

2



φ
d
φ


1


α

2



cos

2



φ





{\displaystyle \Phi (\psi ,\alpha )=2\alpha \sin \psi \int \limits _{0}^{\pi }{\frac {\sin ^{2}\varphi d\varphi }{1-\alpha ^{2}\cos ^{2}\varphi }}}






α
=
1


{\displaystyle \alpha =1}

hol uchun integral oson hisoblanadi va



2
π
sin

ψ


{\displaystyle 2\pi \sin \psi }

ga teng.



α

1


{\displaystyle \alpha \neq 1}

uchun esa





Φ
(
ψ
,
α
)
=



2
π
sin

ψ

α



[

1

(
1


α

2


)



0


π






d
φ


1


α

2



cos

2



φ





]



{\displaystyle \Phi (\psi ,\alpha )={\frac {2\pi \sin \psi }{\alpha }}\left[1-(1-\alpha ^{2})\int \limits _{0}^{\pi }{\dfrac {d\varphi }{1-\alpha ^{2}\cos ^{2}\varphi }}\right]}


yoki





Φ
(
ψ
,
α
)
=



2
π
sin

ψ

α



(

1



1


α

2





)



{\displaystyle \Phi (\psi ,\alpha )={\frac {2\pi \sin \psi }{\alpha }}\left(1-{\sqrt {1-\alpha ^{2}}}\right)}


Shundan soʻng, (12) tenglamani (7)ifodagaa qoʻyamiz va (4)formulani hisobga olgan holda, elliptik silindr maydoni uchun quyidagi ifodani yozamiz:






E

x


(
x
,
z
)
=
4
π
ρ



a

b
+
a




z

E

z


(
x
,
z
)
=
4
π
ρ



b

b
+
a




x


{\displaystyle E_{x}(x,z)=4\pi \rho {\dfrac {a}{b+a}}zE_{z}(x,z)=4\pi \rho {\dfrac {b}{b+a}}x}


Yana qarang




Adabiyotlar




uz.wikipedia.org

Uzpedia.uz