Delta-funksiya




Delta - funksiya yoki Dirak delta funksiyasi

Fanga kiritilish tarixi va matematik isboti



Birinchi marta 1926-yilda Dirak tomonidan kiritilgan



δ


{\displaystyle \delta }

-funksiya odatda quyidagicha ta'riflanadi:

Integrallash chegaralari





,
+



{\displaystyle -\infty ,+\infty }

bo`lishi shart emas. Delta-funksiya cheksiz bo`lgan nuqtani o`z ichiga olgan har qanday soha integrallash sohasi bo`lishi mumkin. Delta-funksiyaning ma'nosi ham shundaki, integral uning argumenti bo`yicha olinadi.

Har qanday uzluksiz



f
(
x
)


{\displaystyle f(x)}

funksiya uchun yozish mumkin:











+



f
(
x
)
δ
(
x
)
d
x
=
f
(
0
)


{\displaystyle \int \limits _{-\infty }^{+\infty }f(x)\delta (x)dx=f(0)}

, agar





<
x
<
+

;
(
4
)


{\displaystyle -\infty <x<+\infty ;(4)}


Haqiqatdan,



δ
(
x
)


{\displaystyle \delta (x)}

xususiyatiga muvofiq, yuqoridagi integralda faqat



x
=
0


{\displaystyle x=0}

nuqta atrofigina ahamiyatlidir. Cheksiz kichik sohada uzluksiz funksiyani o`zgarmas hisoblash mumkin. U vaqtda



f
(
x
)


{\displaystyle f(x)}

funksiyaning



f
(
0
)


{\displaystyle f(0)}

qiymatini integral belgisining oldiga chiqariladi. Qolgan integral esa 3-formulaga asosan birga tengdir.

Delta-funksiya uchun muhim bo`lgan yana bir formulani qarab ko`raylik:




δ
(
k
x
)
=


1


|

k

|




δ
(
x
)
;
(
5
)


{\displaystyle \delta (kx)={\frac {1}{|k|}}\delta (x);(5)}

,
agar



k
=
c
o
n
s
t

0


{\displaystyle k=const\neq 0}


Haqiqatdan ham, agar



k
x


{\displaystyle kx}

ni



ξ


{\displaystyle \xi }

orqali belgilasak,




ξ
=
k
x
;
(
6
)


{\displaystyle \xi =kx;(6)}


U vaqtda (1) va (2) formulalarga asosan,




δ
(
ξ
)
=
0
,


{\displaystyle \delta (\xi )=0,}

agar



ξ

0
;
(
7
)


{\displaystyle \xi \neq 0;(7)}





δ
(
ξ
)
=

,


{\displaystyle \delta (\xi )=\infty ,}

agar



ξ
=
0
;
(
8
)


{\displaystyle \xi =0;(8)}


(5) da ifodalangan tenglik belgisining ma'nosi shundan iboratki, uning o`ng va chap tomonlari integral ostidagi ko`paytuvchilar sifatida olinib, bir xil natija beradi.

Tenglamaning chap tomonini ko`rib chiqaylik. Agar



k
>
0


{\displaystyle k>0}

bo`lsa,











+



δ
(
k
x
)
d
x
=


1


|

k

|











+




|

k

|

δ
(
k
x
)
d
x
=


1


|

k

|











+



k
δ
(
k
x
)
d
x
=


1


|

k

|











+



δ
(
k
x
)
d
(
k
x
)


{\displaystyle \int \limits _{-\infty }^{+\infty }\delta (kx)dx={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }|k|\delta (kx)dx={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }k\delta (kx)dx={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }\delta (kx)d(kx)}


bo`ladi. Ammo (6) ga muvofiq,











+



δ
(
k
x
)
d
(
k
x
)
=


1


|

k

|











+



δ
(
ξ
)
d
ξ


{\displaystyle \int \limits _{-\infty }^{+\infty }\delta (kx)d(kx)={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }\delta (\xi )d\xi }


Endi (6)-(8) ifodalarni nazarda tutib, delta-funksiya ta'rifiga asosan yozishimiz mumkin











+



δ
(
ξ
)
d
ξ
=
1
;
(
9
)


{\displaystyle \int \limits _{-\infty }^{+\infty }\delta (\xi )d\xi =1;(9)}


demak,











+



δ
(
k
x
)
d
x
=


1


|

k

|






{\displaystyle \int \limits _{-\infty }^{+\infty }\delta (kx)dx={\frac {1}{|k|}}}


Agar



k
<
0


{\displaystyle k<0}

bo`lsa,











+



δ
(
k
x
)
d
x
=


1


|

k

|











+




|

k

|

δ
(
k
x
)
d
x
=



1


|

k

|











+



k
δ
(
k
x
)
d
x
=



1


|

k

|











+



δ
(
k
x
)
d
(
k
x
)
=



1


|

k

|











+



δ
(
ξ
)
d
ξ
=


1


|

k

|











+



δ
(
ξ
)
d
ξ
=


1


|

k

|






{\displaystyle \int \limits _{-\infty }^{+\infty }\delta (kx)dx={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }|k|\delta (kx)dx=-{\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }k\delta (kx)dx=-{\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }\delta (kx)d(kx)=-{\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }\delta (\xi )d\xi ={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }\delta (\xi )d\xi ={\frac {1}{|k|}}}


bo`ladi.

(5) ning o`ng tomonidan olingan integral esa











+





1


|

k

|




δ
(
x
)
d
x
=


1


|

k

|











+



δ
(
x
)
d
x
=


1


|

k

|






{\displaystyle \int \limits _{-\infty }^{+\infty }{\frac {1}{|k|}}\delta (x)dx={\frac {1}{|k|}}\int \limits _{-\infty }^{+\infty }\delta (x)dx={\frac {1}{|k|}}}


bo`ladi.

Shunday qilib, (5) ifoda isbotlandi. Xususiy hol



k
=

1


{\displaystyle k=-1}

uchun




δ
(

x
)
=
δ
(
x
)
;
(
10
)


{\displaystyle \delta (-x)=\delta (x);(10)}


Xossalari









θ
(
x
)
=

{




0
,


x
<
0
,




1
,


x
>
0.










{\displaystyle {\displaystyle \theta (x)=\left\{{\begin{array}{*{35}{l}}0,&x<0,\\1,&x>0.\\\end{array}}\right.}}












+



f
(
x
)
δ
(
x


x

0


)

d
x
=
f
(

x

0


)
.


{\displaystyle \int \limits _{-\infty }^{+\infty }f(x)\delta (x-x_{0})\,dx=f(x_{0}).}


Integral tasavvurlar



Amaliyotda, ko`pincha, Delta-funksiyaning integral ko`rinishidan foydalanish qulay:




:
δ
(
t
)
=


1

2
π










+




e

i
ω
t



d
ω


{\displaystyle :\delta (t)={\frac {1}{2\pi }}\int \limits _{-\infty }^{+\infty }e^{i\omega t}\,d\omega }


Yana qarang




Adabiyotlar




uz.wikipedia.org


Uzpedia.uz