Bessel tengsizligi




Matematikada, ayniqsa funksional tahlil(analiz)da, Bessel tengsizligi ortonormal ketma-ketlikka nisbatan Gilbert fazosida



x


{\displaystyle x}

elementning koeffitsientlari haqidagi jumladir. Tengsizlik 1828-yilda nemis olimi Friedrich Bessel (astronomiya, matematika, fizika va geodeziya fanlari olimi) tomonidan keltirib chiqarilgan.




H


{\displaystyle H}

Gilbert fazosi va




e

1


,

e

2


,
.
.
.


{\displaystyle e_{1},e_{2},...}





H


{\displaystyle H}

dagi ortonormal ketma-ketlik bo'lsin. U holda,



H


{\displaystyle H}

dagi har qanday vektor



x


{\displaystyle x}

uchun







k
=
1







|



x
,

e

k





|


2






x



2


,


{\displaystyle \sum _{k=1}^{\infty }\left\vert \left\langle x,e_{k}\right\rangle \right\vert ^{2}\leq \left\Vert x\right\Vert ^{2},}


munosabat o'rinli bo'ladi, bu yerda ⟨·,·⟩ belgi



H


{\displaystyle H}

Gilbert fazosidagi skalyar ko'paytmani ifodalaydi. Agar




e

k




{\displaystyle e_{k}}

yo'nalishdagi



x


{\displaystyle x}

vektor proyeksiyaning "cheksiz yig'indi" sidan tuzilgan





x


=



k
=
1








x
,

e

k






e

k


,


{\displaystyle x'=\sum _{k=1}^{\infty }\left\langle x,e_{k}\right\rangle e_{k},}


cheksiz summani aniqlasak, u holda Bessel tengsizligi bu qatorning yaqinlashuvchi ekanligini ta'kidlaydi. Bu haqda quyidagicha ham o'ylash mumkin: potensial bazis




e

1


,

e

2


,



{\displaystyle e_{1},e_{2},\dots }

orqali ifodalanishi mumkin bo'lgan




x



H


{\displaystyle x'\in H}

mavjud bo'ladi.

To'liq ortonormal ketma-ketlik uchun (ya'ni, bazis bo'lgan ortonormal ketma-ketlik uchun) biz Parseval ayniyatiga egamiz. Bunda tengsizlikni tenglik bilan almashtiriladi (va natijada




x




{\displaystyle x'}

ham



x


{\displaystyle x}

bilan almashtirilishi kerak bo'ladi).

Bessel tengsizligi quyidagi, har qanday natural son n uchun bajariladigan ayniyatdan kelib chiqadi








0





x




k
=
1


n



x
,

e

k




e

k






2





=

x



2



2



k
=
1


n


Re


x
,

x
,

e

k




e

k



+



k
=
1


n



|


x
,

e

k





|


2








=

x



2



2



k
=
1


n



|


x
,

e

k





|


2


+



k
=
1


n



|


x
,

e

k





|


2








=

x



2






k
=
1


n



|


x
,

e

k





|


2


.






{\displaystyle {\begin{aligned}0\leq \left\|x-\sum _{k=1}^{n}\langle x,e_{k}\rangle e_{k}\right\|^{2}&=\|x\|^{2}-2\sum _{k=1}^{n}\operatorname {Re} \langle x,\langle x,e_{k}\rangle e_{k}\rangle +\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}\\&=\|x\|^{2}-2\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}+\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}\\&=\|x\|^{2}-\sum _{k=1}^{n}|\langle x,e_{k}\rangle |^{2}.\end{aligned}}}


Yana qarang




Manbalar




Havolalar



 Bessel's Inequality the article on Bessel's Inequality on MathWorld.

Ushbu maqola Creative Commons Attribution/Share-Alike litsenziyasi ostida litsenziyalangan PlanetMath-dagi Bessel tengsizligidan olingan materiallarni o'z ichiga oladi.

uz.wikipedia.org

Uzpedia.uz