Abel polinomlari
Matematikadagi
Abel koʻphadlari koʻp nomli ketma- ketlikni hosil qiladi, uning n -chi hadi quyidagi koʻrinishga ega.
p
n
(
x
)
=
x
(
x
−
a
n
)
n
−
1
.
{\displaystyle p_{n}(x)=x(x-an)^{n-1}.}
Bu ketma-ketlik norvegiyalik kuchli matematik Niels Henrik Abel (1802-1829) sharafiga nomlangan.
Bu koʻp nomli ketma-ketlik binomial tipga ega: aksincha, binomial turdagi har bir polinom ketma-ketligini umbral hisobdagi Abel ketma-ketligidan olish ham mumkin.
Misollar
a = 1 uchun polinomlar
p
0
(
x
)
=
1
;
{\displaystyle p_{0}(x)=1;}
p
1
(
x
)
=
x
;
{\displaystyle p_{1}(x)=x;}
p
2
(
x
)
=
−
2
x
+
x
2
;
{\displaystyle p_{2}(x)=-2x+x^{2};}
p
3
(
x
)
=
9
x
−
6
x
2
+
x
3
;
{\displaystyle p_{3}(x)=9x-6x^{2}+x^{3};}
p
4
(
x
)
=
−
64
x
+
48
x
2
−
12
x
3
+
x
4
;
{\displaystyle p_{4}(x)=-64x+48x^{2}-12x^{3}+x^{4};}
a = 2 uchun polinomlar
p
0
(
x
)
=
1
;
{\displaystyle p_{0}(x)=1;}
p
1
(
x
)
=
x
;
{\displaystyle p_{1}(x)=x;}
p
2
(
x
)
=
−
4
x
+
x
2
;
{\displaystyle p_{2}(x)=-4x+x^{2};}
p
3
(
x
)
=
36
x
−
12
x
2
+
x
3
;
{\displaystyle p_{3}(x)=36x-12x^{2}+x^{3};}
p
4
(
x
)
=
−
512
x
+
192
x
2
−
24
x
3
+
x
4
;
{\displaystyle p_{4}(x)=-512x+192x^{2}-24x^{3}+x^{4};}
p
5
(
x
)
=
10000
x
−
4000
x
2
+
600
x
3
−
40
x
4
+
x
5
;
{\displaystyle p_{5}(x)=10000x-4000x^{2}+600x^{3}-40x^{4}+x^{5};}
p
6
(
x
)
=
−
248832
x
+
103680
x
2
−
17280
x
3
+
1440
x
4
−
60
x
5
+
x
6
;
{\displaystyle p_{6}(x)=-248832x+103680x^{2}-17280x^{3}+1440x^{4}-60x^{5}+x^{6};}
Manbalar
Havolalar
uz.wikipedia.org